欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2312-2319.doi: 10.3724/SP.J.1006.2012.02312

• 研究简报 • 上一篇    

应用IMP标记分析30份烟草品种的遗传关系

谢贺1,高玉龙1,宋中邦1,桂毅杰2,樊龙江2,肖炳光1,卢秀萍1,*   

  1. 1云南省烟草农业科学研究院, 云南玉溪 653100; 2浙江大学农业与生物技术学院, 浙江杭州 310029
  • 收稿日期:2012-03-20 修回日期:2012-08-15 出版日期:2012-12-12 网络出版日期:2012-10-08
  • 通讯作者: 卢秀萍, E-mail: xplu@yntsti.com, Tel: 0877-2075055
  • 基金资助:

    本研究由云南省科技厅项目(2008CD194)和云南省烟草公司项目(08A05)资助。

Genetic Diversity in 30 Tobacco Varieties Analyzed by IMP Markers

XIE He1,GAO Yu-Long1,SONG Zhong-Bang1,GUI Yi-Jie2,FAN Long-Jiang2,XIAO Bing-Guang1,LU Xiu-Ping1,*   

  1. 1 Yunnan Academy of Tobacco Agriculture Science, Yuxi 653100, China; 2 College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310029, China
  • Received:2012-03-20 Revised:2012-08-15 Published:2012-12-12 Published online:2012-10-08
  • Contact: 卢秀萍, E-mail: xplu@yntsti.com, Tel: 0877-2075055

摘要:

MITE (miniature inverted repeat transposable element)是植物中存在的高重复的一类转座元件。基于邻近MITE扩增多态设计的分子标记称为IMP标记(inter MITE polymorphisms)。从133IMP引物中筛选出32个稳定多态的引物, 并以30个烟草品种为材料, 获得185个多态条带, 平均每对引物检测多态条带5.78个。聚类分析显示, 参试品种间遗传距离的变化范围为0.02~0.81、平均为0.3330份烟草品种可分为3, 晒烟、香料烟、北方烤烟品种等属I; II类主要是美国NC系列品种、Coker系列品种和云烟系列烤烟品种; III类为两个白肋烟品种。结果表明, IMP标记能够在烟草中扩增并获得品种间多态信息, 可用于品种间的遗传关系分析, 这为烟草的遗传研究及分子辅助育种奠定基础。同时, 聚类结果显示, 30个栽培烟草品种之间亲缘关系较近, 丰富烟草种质资源应是今后育种的方向之一。

关键词: IMP分子标记, 烟草, 遗传关系

Abstract:

Miniature Inverted repeat Transposable Element (MITEs) is a high copy number transposon family in plants. Molecular markers based on closely located MITEs are termed Inter MITE polymorphisms or IMP. We conducted the genetic distance evaluation and cluster analyses of 30 tobacco cultivars using IMP markers. Among 133 primers screened, 32 primers had steady polymorphism bands. A total of 185 polymorphic bands were detected out of 30 cultivars, with 5.78 polymorphism bands per IMP primer. The genetic distance among cultivars ranged from 0.02 to 0.81, with an average of 0.33. According to cluster analyses, 30 tobacco cultivars could be classified into three groups. Group I included sun-cured tobacco, oriental tobacco and flue-cured tobacco of northern China; group II included USA NC series, Coker series and China Yunyan series; group III included two burley tobacco cultivars. The cluster analysis result closely matched the classic relationship among the cultivars. The result showed that the IMP markers, successfully amplified in tobacco, generated fairly polymorphism and could be applied in genetic diversity analysis. Thus, IMP markers establish a foundation for Tobacco genetic study and marker-assisted selection. The genetic diversity is very low among 30 tobacco cultivars investigated in this study, indicating that a strategy to enrich tobacco germplasm for further breeding should be developed.

Key words: IMP molecular marker, Tobacco, Genetic diversity

[1]Ren N, Timko M P. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 2001, 44: 559–571



[2]Bahulikar R A, Stanculescu D, Preston C A, Baldwin I T. ISSR and AFLP analysis of the temporal and spatial population structure of the post-fire annual, Nicotiana attenuata, in SW Utah. BMC Ecol, 2004, 4: 12



[3]Xiao B-G(肖炳光), Xu Z-L(徐照丽), Chen X-J(陈学军), Shen A-R(申爱荣), Li Y-P(李永平), Zhu J(朱军). Genetic linkage map constructed by using a DH population for the flue-cured tobacco. Acta Tabaca Sin (中国烟草学报), 2006, 12(4): 35–40 (in Chinese with English abstract)



[4]Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet, 2011, 123: 219–230



[5]Bureau T E, Ronald P C, Wessler S R. A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc Natl Acad Sci USA, 1996, 93: 8524–8529



[6]Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X. Sequence and analysis of rice chromosome 4. Nature, 2002, 420: 316–320



[7]Santiago N, Herráiz C, Goñi J R, Messeguer X, Casacuberta J M. Genome-wide analysis of the emigrant family of MITEs of Arabidopsis thaliana. Mol Biol Evol, 2002, 19: 2285–2293



[8]Schnable P S, Ware D, Fulton R S, Stein J C, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves T A. The B73 maize genome: complexity, diversity, and dynamics. Science, 2009, 326: 1112–1115



[9]Feschotte C, Swamy L, Wessler S R. Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). Genetics, 2003, 163: 747–758



[10]Bureau T E, Wessler S R. Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell, 1994, 6: 907–916



[11]Yang G, Lee Y H, Jiang Y, Shi X, Kertbundit S, Hall T C. A two-edged role for the transposable element Kiddo in the rice ubiquitin2 promoter. Plant Cell, 2005, 17: 1559–1568



[12]Piriyapongsa J, Jordan I K. A family of human micro RNA genes from miniature inverted-repeat transposable elements. PloS One, 2007, 2(2): e203



[13]Bureau T E,Wessler S R. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell, 1992, 4: 1283–1294



[14]Chang R Y, O'Donoughue L S, Bureau T E. Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor Appl Genet, 2001, 102: 773–781



[15]Lyons M, Cardle L, Rostoks N, Waugh R, Flavell A J. Isolation, analysis and marker utility of novel miniature inverted repeat transposable elements from the barley genome. Mol Genet Genom, 2008, 280: 275–285



[16]Nakayama S. Inter-MITE polymorphisms of a newly identified MITE show relationships among sugarcane (Saccharum) species. Genet Resour Crop Evol, 2012: 59: 1389–1396



[17]Kova?ík A, Koukalova B, Lim K, Matyášek R, Lichtenstein C, Leitch A, Bezděk M. Comparative analysis of DNA methylation in tobacco heterochromatic sequences. Chrom Res, 2000, 8: 527–541



[18]Flavell R B, Bennett M D, Smith J B, Smith D B. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet, 1974, 12: 257–269



[19]Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar P B, Ouyang S, Jiang J, Buell C R, Baker B. Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the solanaceae: new functional implications for MITEs. Genome Res, 2009, 19: 42–56



[20]Smith J S C, Chin E C L, Shu H, Smith O S, Wall S J, Senior M L, Mitchell S E, Kresovich S, Ziegle J. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPS and pedigree. Theor Appl Genet, 1997, 95: 163–173



[21]Rohlf F J. NTSYSpc numerical taxonomy and multivariate analysis system, Ver. 2.0 Exeter Software. Setauket New York, USA, 1998



[22]Nei M. Genetic distance between populations. Am Nat, 1972, 106: 283–292



[23]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739



[24]Xiao B-G(肖炳光), Gao Y-L(高玉龙), Wu W-R(吴为人). Analysis of genetic relationships among twenty-three tobacco varieties based on simple sequence repeat (SSR) marker. Fenzi Zhiwu Yuzhong (Online), (分子植物育种-网络版), 2011, 9: 39, DOI: 10.5376/mpb.cn.2011.09.0039 (in Chinese with English abstract)



[25]Feschotte C, Jiang N, Wessler S R. Plant transposable elements: where genetics meets genomics. Nat Rev Genet, 2002, 3: 329–341



[26]Velasco R, Zharkikh A, Troggio M, Cartwright D A, Cestaro A, Pruss D, Pindo M, FitzGerald L M, Vezzulli S, Reid J. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PloS One, 2007, 2(12): e1326



[27]Wessler S R, Bureau T E, White S E. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev, 1995, 5: 814–821



[28]Casacuberta J M, Santiago N. Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene, 2003, 311: 1–11



[29]Myburg A A, Remington D L, O'Malley D M, Sederoff R R, Whetten R W. High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. Biotechniques, 2001, 30: 348–347



[30]Casa A, Mitchell S, Smith O, Register Iii J, Wessler S, Kresovich S. Evaluation of Hbr (MITE) markers for assessment of genetic relationships among maize (Zea mays L.) inbred lines. Theor Appl Genet, 2002, 104: 104–110



[31]Moon H, Nicholson J, Heineman A, Lion K, van der Hoeven R, Hayes A, Lewis R. Changes in genetic diversity of US flue-cured tobacco germplasm over seven decades of cultivar development. Crop Sci, 2009, 49: 498–508



[32]Arslan B, Okumus A. Genetic and geographic polymorphism of cultivated tobaccos (Nicotiana tabacum) in Turkey. Genetika, 2006, 42: 818–823



[33]Murphy J, Cox T, Rufty R, Rodgers D. A representation of the pedigree relationships among flue-cured tobacco cultivars. Tob Sci, 1987, 31: 70–75



[34]Moon H S, Nicholson J S, Lewis R S. Use of transferable Nicotiana tabacum L. microsatellite markers for investigating genetic diversity in the genus Nicotiana. Genome, 2008, 51: 547–559



[35]Wang Y-Y(王元英), Zhou J(周健). Main tobacco assortment blood reasons of China and the United States analysis and tobacco breeding. Acta Tabaca Sin (中国烟草学报), 1995, 2(3): 11–22 (in Chinese with English abstract)



[36]Kosman E, Leonard K. Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol, 2005, 14: 415–424



[37]Moon H S, Nifong J M, Nicholson J S, Heineman A, Lion K, van der Hoeven R, Hayes A J, Lewis R S. Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Sci, 2009, 49: 2149–2159

[1] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[2] 董庆园,马德清,杨学,刘勇,黄昌军,袁诚,方敦煌,于海芹,童治军,沈俊儒,许银莲,罗美中,李永平,曾建敏. 高抗黑胫病烤烟BAC文库的构建及分析[J]. 作物学报, 2020, 46(6): 869-877.
[3] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[4] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[5] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
[6] 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
[7] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[8] 王建伟,贺晓岚,李文旭,陈新宏. 小麦近缘属植物1-FFT基因的克隆及功能分析[J]. 作物学报, 2018, 44(6): 814-823.
[9] 钟思荣,陈仁霄,陶瑶,龚丝雨,何宽信,张启明,张世川,刘齐元. 耐低氮烟草基因型的筛选及氮效率分析[J]. 作物学报, 2017, 43(07): 993-1002.
[10] 赵佩,腾丽杰,王轲,杜丽璞,任贤,佘茂云,叶兴国. 小麦TaVIP1家族基因克隆、分子特性及功能分析[J]. 作物学报, 2017, 43(02): 201-209.
[11] 姚新转,刘洋,赵德刚. 高粱Na+转运蛋白基因SbSKC1的克隆及其在烟草中的抗盐功能鉴定[J]. 作物学报, 2017, 43(02): 190-200.
[12] 陶瑶,王瑜,钟思荣,吴凌敏,谢丽娟,聂亚平,周玮,王建革,刘齐元. 烟草ATP合酶F0部分4个亚基基因转录本编辑位点分析[J]. 作物学报, 2016, 42(12): 1743-1753.
[13] 童治军,焦芳婵,方敦煌,陈学军,吴兴富,曾建敏,谢贺,张谊寒,肖炳光*. 烟草染色体片段代换系的构建与遗传评价[J]. 作物学报, 2016, 42(11): 1609-1619.
[14] 张体付,戚维聪,顾闽峰,张晓林,李坦,赵涵. 藜麦EST-SSR的开发及通用性分析[J]. 作物学报, 2016, 42(04): 492-500.
[15] 贺晓岚,王建伟,李文旭,陈真真,赵继新,武军,王中华,陈新宏. 大赖草6-SFT基因的克隆及其转基因烟草抗旱和抗寒性分析[J]. 作物学报, 2016, 42(03): 389-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!