欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (04): 492-500.doi: 10.3724/SP.J.1006.2016.00492

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

藜麦EST-SSR的开发及通用性分析

张体付1,**,戚维聪1,**,顾闽峰2,张晓林1,李坦1,赵涵1,*   

  1. 1 江苏省农业科学院 / 江苏省农业生物学重点实验室,江苏南京 210014;2 盐城市新洋农业试验站,江苏盐城 224336
  • 收稿日期:2015-05-31 修回日期:2016-01-11 出版日期:2016-04-12 网络出版日期:2016-01-25
  • 通讯作者: 赵涵, E-mail: zhaohan@jaas.ac.cn, Tel: 025-84390751
  • 基金资助:

    本研究由江苏省农业科技自主创新资金项目(CX(14)2044), 美国国际发展署Securing water for food award-salt tolerant quinoa子项目(UR4443 B)资助。

Exploration and Transferability Evaluation of EST-SSRs in Quinoa

ZHANG Ti-Fu1,**,QI Wi-Cong1,**,GU Min-Feng2,ZHANG Xiao-Lin1,LI Tan1,ZHAO Han1,*   

  1. 1 Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 2 Xinyang Agricultural Experiment Station of Yancheng City, Yancheng 224336, China
  • Received:2015-05-31 Revised:2016-01-11 Published:2016-04-12 Published online:2016-01-25
  • Contact: 赵涵, E-mail: zhaohan@jaas.ac.cn, Tel: 025-84390751
  • Supported by:

    This study was supported by Jiangsu Agriculture Science and Technology Innovation Fund (CX(14)2044) and the subproject of “Securing water for food award-salt tolerant quinoa” from USAID (UR4443 B).

摘要:

藜麦因营养均衡受到越来越多的关注,但尚未深入开展其基础研究。开发微卫星序列重复SSR分子标记将为藜麦的遗传分析提供重要资源。本研究利用NCBI数据库中藜麦RNA测序RNA-Seq及表达序列标签EST数据挖掘、验证及评价藜麦EST-SSR,共发现1862个藜麦非单核苷酸EST-SSR。其中,二核苷酸重复最多(38.3%),六核苷酸重复最少(11.7%)。不同重复类型SSR的数量随着核苷酸数目的增加呈下降趋势。在随机选取验证的119个EST-SSR标记中,66 (55.9%)个能够扩增出清晰条带,39个在4份藜麦资源中具有多态性,且其多态性与重复序列长度不具有显著相关性。t测验显示,多态性EST-SSR在藜麦与其他藜科种质间不存在显著差异,说明其具有良好的通用性,可用于藜科物种的遗传关系分析。

关键词: 藜麦, EST-SSR, 分子标记, 遗传关系, 通用性

Abstract:

Quinoa draws more and more attentions from people, since quinoa seed as grain has comprehensive nutrients.But the fundamental research on quinoa just starts and remains in a moderated level. Simple sequence repeat (SSR) development in quinoa will enhance the resource for its genetic analysis. Here,the available RNA based sequencing (RNA-Seq) and expressed sequence tag (EST) data of quinoa deposited in the National Center for Biotechnology Information (NCBI) were engaged in EST-SSR development.Totally,1862 non-mononucleotide EST-SSRswere identified. Among the EST-SSRs, the dinucleotide type was the most abundant (38.3%), and the hexanucleotidewas the minimal(11.7%). The amount of the EST-SSR showed the declined trend along with the increase in its motif nucleotide length. Among 119 EST-SSR primersrandomly chosen for validation,66(55.9%) primers could give clearamplification bandsand 39 showed polymorphismsinfour quinoa accessions.Further analysis showed that the polymorphisms of EST-SSRs had no significant correlation with their motif nucleotide length. In addition, t-test demonstrated that the significant difference of EST-SSRpolymorphismswas not occurredbetween quinoa accessions and otherChenopodiaceae germplasm. These results indicating EST-SSRs developed in quinoa could be transferable in Chenopodiaceous genus and applied in genetic relationship analysis.

Key words: Quinoa, EST-SSR, Molecular marker, Genetic relationship, Transferability

[1]Razzaghi F, Plauborg F, Jacobsen S, Jensen C R, Andersen M N. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agric Water Manag, 2012, 109: 20–29

[2]Adolf V I, Jacobsen S, Shabala S. Salt tolerance mechanisms in quinoa(Chenopodium quinoaWilld.). Environ Exp Bot, 2013, 92: 43–54

[3]Ogungbenle H N. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. Intl J Food SciNutr, 2003, 54: 153–158

[4]Fairbanks D J, Waldrigues A, Ruas C F, Ruas P M, Maughan P J, Robison L R, Andersen W R, Riede C R, Pauley C S, Caetano L G. Efficient characterization of biological diversity using field DNA extraction and random amplified polymorphic DNA markers. Rev Brazil Genet, 1993, 16: 11–22

[5]Mason S L, Stevens M R, Jellen E N, Bonifacio A, Fairbanks D J, Coleman C E, Mccarty R R, Rasmussen A G, Maughan P J. Development and use of  microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoaWilld.). Crop Sci, 2005, 45: 1618–1630

[6]Coles N D, Coleman C E, Christensen S A, Jellen E N, Stevens M R, Bonifacio A, Rojas-Beltran J A, Fairbanks D J, Maughan P J. Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci, 2005, 168: 439–447

[7]Fuentes F F, Bazile D, Bhargava A, Martínez E A. Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J AgricSci, 2012, 150: 702–716

[8]Jarvis D E, Maughan P J, Kopp O R, Jellen E N, Mallory M A, Pattee J, BonifacioA, Coleman C E, Stevens M R, Fairbanks D J. Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J Genet, 2008, 87: 39–51

[9]Maughan P J, Smith S M, Rojas-Beltrán J A, Elzinga D, Raney J A, Jellen E N, Bonifacio A, Udall J A, Fairbanks D J. Single nucleotide polymorphisms identification, characterization and linkage mapping in Chenopodium quinoa. Plant Genome, 2012, 5: 1–7

[10]Eckardt N A. Sequencing the rice genome. Plant Cell, 2000, 12: 2011–2017

[11]Martienssen R A, Rabinowicz P D, O Shaughnessy A, Mccombie W R. Sequencing the maize genome. CurrOpin Plant Biol, 2004, 7: 102–107

[12]Stevens M R, Coleman C E, Parkinson S E, Maughan P J, Zhang H B, Balzotti M R, Kooyman D L, Arumuganathan K, Bonifacio A, Fairbanks D J, Jellen E N, Stevens J J. Construction of a quinoa (Chenopodium quinoaWilld.) BAC library and its use in identifying genes encoding seed storage proteins. TheorAppl Genet, 2006, 112: 1593–1600

[13]Palomino G, Hernández L T, de la Cruz Torres E. Nuclear genome size and chromosome analysis in Chenopodium quinoa and C.berlandieri subsp. nuttalliae. Euphytica, 2008, 164: 221–230

[14]Fuentes F, Bhargava A. Morphological analysis of quinoa germplasm grown under lowland desert conditions. J Agron Crop Sci, 2011, 197: 124–134

[15]Xia H, Zheng X, Chen L, Gao H, Yang H, Long P, Rong J, Lu B, Li J, Luo L. Genetic differentiation revealed by selective loci of drought-responding EST-SSRs between upland and lowland rice in China. PloSOne, 2014, 9: e106352

[16]Asadi A A, Monfared S R. Characterization of EST-SSR markers in durum wheat EST library and functional analysis of SSR-containing EST fragments. Mol Genet Genom, 2014, 289: 625–640

[17]Chuang T, Yang M, Lin C, Hsieh P, Hung L. Comparative genomics of grass EST libraries reveals previously uncharacterized splicing events in crop plants. BMC Plant Biol, 2015, 15: 39–53

[18]Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol, 2011, 29: 644–652

[19]Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89: 583–590

[20]Ott J. Strategies for characterizing highly polymorphic markers in human gene mapping. Am J Human Genet, 1992, 51: 283–290

[21]Rohlf F J. NTSYS-pc: Numerical taxonomy system. ver. 2.1.Setauket, NY: Exeter Publishing Ltd. 2002

[22]Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes.Nucl Acids Res, 1984, 12: 4127–4138

[23]潘海涛, 汪俊君, 王盈盈, 齐照良, 李斯深. 小麦EST-SSR的开发和遗传作图. 中国农业科学,2010, 24: 452–461

Pan H T, Wang J J, Wang Y Y, Qi Z L, Li S S. Development and mapping of EST-SSR marker in wheat. SciAgricSin, 2010, 24: 452–461 (in Chinese with English abstract)

[24]赖勇, 王鹏喜, 范贵强, 司二静, 王晋, 杨轲, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊. 大麦SSR标记遗传多样性及其与农艺性状关联分析. 中国农业科学, 2013,27: 233–242

Lai Y, Wang P X, Fan G Q, Si E J, Wang J, Yang K, Meng Y X, Li B C, Ma X L, Shang X W, Wang H J. Genetic diversity and association analysis using SSR markers in barley. SciAgricSin, 2013, 27: 233–242 (in Chinese with English abstract)

[25]宋海斌, 崔喜波, 马鸿艳, 朱子成, 栾非时. 基于SSR标记的甜瓜品种(系)DNA指纹图谱库的构建. 中国农业科学, 2012, 26: 2676–2689

Song H B, Cui X B, Ma H Y, Zhu Z C, Luan F S. Construction of DNA fingerprint database based on SSR marker for varieties (lines) of CucumismeloL.SciAgricSin, 2012, 26: 2676–2689 (in Chinese with English abstract)

[26]王西成, 姜淑苓, 上官凌飞, 曹玉芬, 乔玉山, 章镇, 房经贵. 梨EST-SSR标记的开发及其在梨品种遗传多样性分析中的应用评价. 中国农业科学, 2010, 24: 5079–5087

Wang X C, Jiang S L, Shang-guan L F, Cao Y F, Qiao Y S, Zhang Z, Fang J G. Development of EST-derived SSR markers for pear and evaluation of their application in pear genetic diversity  analysis.SciAgricSin, 2010, 24: 5079–5087 (in Chinese with English abstract)

[27]张体付, 葛敏, 韦玉才, 赵涵. 玉米功能性Insertion/Deletion(InDel)分子标记的挖掘及其在杂交种纯度鉴定中的应用. 玉米科学, 2012, 20: 64-68

Zhang T F, Ge M, Wei Y C, Zhao H. Discovery for maize function Insertion/Deletion (InDel) polymorphic marker and its implication in purity identification of maize hybrid seeds. JMaize Sci, 2012, 20: 64–68 (in Chinese with English abstract)

[28]戚维聪, 程计华, 黄邦全, 李坦, 林峰. 基于海甘蓝RNA-Seq序列开发EST-SSR分子标记. 江苏农业学报, 2014, 30: 997–1002

Qi W C, Cheng J H, Huang B Q, Li T, Lin F. Development and characterization of EST-SSRmarkers derived from RNA-Seq in Crambeabyssinica. Jiangsu J AgricSci,2014, 30: 997–1002 (in Chinese with English abstract)

[29]束永俊, 李勇, 吴娜拉胡, 柏锡, 才华, 纪巍, 朱延明. 大豆EST-SNP的挖掘、鉴定及其CAPS标记的开发. 作物学报, 2010, 36: 574–579

Su Y J, Li Y, Wu N L H, Bai X, Cai H, Ji W, Zhu Y M. Mining and identification of SNP from EST sequences and conversion of CAPS markers in soybean. ActaAgronSin, 2010, 36: 574–579 (in Chinese with English abstract)

[30]Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 2000, 156: 847–854

[31]李淑娴, 张新叶, 王英亚, 尹佟明. 桉树EST序列中微卫星含量及相关特征. 植物学报, 2010, 45: 363–371

Li S X, Zhang X Y, Wang Y Y, Yi T M. Content and characteristics of microsatellites detected in expressed sequence tag sequences in Eucalyptus. Chin Bull Bot, 2010, 45: 363–371(in Chinese with English abstract)

[32]Gao L, Tang J, Li H, Jia J. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed, 2003, 12: 245–261

[33]程海亮, 陆才瑞, 邹长松, 余道乾, 姜鹏飞, 杨文翠, 张友平, 王巧连, 宋国立. 基于10个棉花腺体相关材料转录组的EST-SSR标记开发. 棉花学报, 2015, 27: 1–8

Cheng H L, Lu C R, Zou C S, Yu D Q, Jiang P F, Yang W C, Zhang Y P, Wang Q L, Song G L. Development of EST-SSR markers in cotton based on the transcriptome information of 10 gland related materials. Cotton Sci, 2015, 27: 1–8(in Chinese with English abstract)

[34]Chabane K, Ablett G A, Cordeiro G M, Valkoun J, Henry R J. EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resourc Crop Evol, 2005, 52: 903–909

[35]Cho Y G, Ishii T, Temnykh S, Chen X, Lipovich L, Mccouch S R, Park W D, Ayres N, Cartinhour S. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). TheorAppl Genet, 2000, 100: 713–722

[36]Temnykh S, Declerck G, Lukashova A, Lipovich L, Cartinhour S, Mccouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11: 1441–1452

[1] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[2] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[3] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[4] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390.
[5] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[6] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[7] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[8] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[9] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[10] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[11] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[12] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[13] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[14] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
[15] 牟碧涛,赵卓凡,岳灵,李川,张钧,李章波,申汉,曹墨菊. 两份玉米CMS-C恢复系的育性恢复力测定及恢复基因的分子标记定位[J]. 作物学报, 2019, 45(2): 225-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!