欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (04): 482-491.doi: 10.3724/SP.J.1006.2016.00482

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用单片段代换系测交群体定位玉米产量相关性状的杂种优势位点

彭倩**,薛亚东**,张向歌,李慧敏,孙高阳,李卫华,谢慧玲,汤继华*   

  1. 省部共建小麦玉米作物学国家重点实验室 / 河南省粮食作物协同创新中心 / 河南农业大学农学院, 河南郑州450002
  • 收稿日期:2015-07-04 修回日期:2016-01-11 出版日期:2016-04-12 网络出版日期:2016-01-26
  • 通讯作者: 汤继华, E-mail: tangjihua1@163.com, Tel: 0371-63558377.
  • 基金资助:

    本研究由国家自然科学基金项目(31271732)资助。

Identification of Heterotic Loci for Yield and Ear Traits Using CSSL Test Population in Maize

PENG Qian**,XUE Ya-Dong**,ZHANG Xiang-Ge,LI Hui-Min,SUN Gao-Yang,LI Wei-Hua,XIE Hui-Ling,TANG Ji-Hua*   

  1. Key Laboratory of Wheat and Maize Crops Science / Collaborative Innovation Center of Henan Grain Crops/ College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
  • Received:2015-07-04 Revised:2016-01-11 Published:2016-04-12 Published online:2016-01-26
  • Contact: 汤继华, E-mail: tangjihua1@163.com, Tel: 0371-63558377.
  • Supported by:

    This study was supported by the National Natural Science Foundation of China.

摘要:

杂种优势利用是提高农作物产量与品质的一种重要途径, 而明确杂种优势的遗传机制将促进优良玉米新品种的选育, 但是截至目前其遗传机制仍然不清楚。本研究以玉米自交系lx9801背景的昌7-2的单片段代换系为基础材料, 利用与自交系T7296的测交群体, 对昌7-2和lx9801对应染色体片段与T7296之间存在差异的杂种优势位点进行了分析, 共检测出64个不同穗部性状和产量的杂种优势位点(HL), 其中23个在2个环境中同时被检测到, 包括4个穗长的HL, 4个穗粗的HL, 4个穗行数的HL, 7个行粒数的HL和4个产量的HL, 并在多个染色体片段上鉴定出同时包含产量及其构成因子的杂种优势位点, 该研究为进一步解析玉米产量杂种优势形成的遗传机制奠定了材料基础。

关键词: 玉米, 染色体片段代换系, 产量, 杂种优势, 数量性状位点

Abstract:

Heterosis plays an important role in enhancingcrop yield and quality.Dissecting the genetic basis of heterosis can promote hybrid maize selection, however that is unclear up to now. In this study, a set of chromosome segment substitution lines (CSSLs) population,which was constructed using the inbred line lx9801 as the receptor parent and the inbred line Chang7-2 as the donor parent, was crossed with the inbred line T7296 to construct the corresponding test population. The test population was used to identify the heterotic loci (HL) for grain yield and ear traits in maize,which showed significant difference inheterosisbetween the corresponding chromosomal region of the inbred line Chang7-2 and lx9801as well as the test inbred line T7296. A total of 64HL were identified for gain yield and ear traits, and among them 23 HL were identified at the two environments simultaneously, including 4 HL for ear length, 4 HL for ear width, 4 HL for row number, 7 HL for kernels per row, and 4HL for grain yield. Additionally, the HL for both grain yield and its components simultaneously were found on many chromosomal regions.This study could offer a basic material for thoroughly dissecting the genetic basis of heterosis for grain yield and its components in maize.

Key words: Maize, Chromosome segment substitution lines, Grain yield, Heterosis, Quantitative trait loci

[1]Shull G H. The composition of a field of maize. J Heredity, 1908, 4: 296–301



[2]Bruce A B. The Mendelian theory of heredity and the augmentation of vigor. Science, 1910, 32:627–628



[3]Jones D F. Dominance of linked factors as a means of accounting for heterosis. Proc Natl Acad SciUSA, 1917, 3: 310–312



[4]East E M. Heterosis. Genetics, 1936, 21:375–397



[5]Yu S B, Li J X, Xu C G, Yan Y F, Gao Y J. Importance of epistasis as the genetic basis of the heterosis in an elite rice hybrid. Proc Natl Acad SciUSA, 1997, 94: 9226–9231



[6]Song R T, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad SciUSA, 2003, 100: 9055–9060



[7]Hoecker N, Keller B, Muthreich N, Chollet D, Descombes P, Piepho HP, Hochholdinger F. Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcription suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics, 2008, 179: 1275–1283



[8]Fu Z Y, Jin X N, Ding D, Li Y L, Fu Z J, Tang J H. Proteomic analysis of heterosis during maize seed germination. Proteomics, 2011, 11:1462–1472



[9]Ding D, Wang Y J, Han M S, Fu Z Y, Li W H, Liu Z H, Hu Y M, Tang J H. MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS One, 2012, 7(6):e39578



[10]Guo M, Rupe M A, Wei J, Winkler C, Goncalves-Butruille M, Weers B P, Cerwick S F, Dieter J A, Duncan K E, Howard R J, Hou Z, L?ffler C M, Cooper M, Simmons C R. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot, 2014, 65: 249–260



[11]严建兵, 汤华, 黄益勤, 石永刚, 李建生, 郑用琏. 不同发育时期玉米株高QTL的动态分析. 科学通报, 2003, 48: 1959–1964



Yan JB, Tang H, Huang Y Q, Si Y G, Li J S Zheng Y L. Dynamic QTL analysis for plant height in different developing stages in maize. Chin Sci Bull, 2003,48: 1959–1964(in Chinese with English abstract)



[12]Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson AH. Overdominance epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics, 2001, 158: 1737–1753



[13]Kusterer B, Muminovic J, Utz HF, Piepho HP, Barth S, Heckenberger M, Meyer R C, Altmann T, Melchinger A E. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics, 2007, 175: 2009–2017



[14]Kusterer B, Piepho HP, Utz HF, Muminovic J, Meyer R C, Altmann T, Melchinger A E. Heterosis for biomassrelated traits in Arabidopsis investigated by a novel QTL analysis of the triple testcross design with recombinant inbred lines. Genetics, 2007, 177:1839–1850



[15]Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad SciUSA, 2003,100: 2574–2579



[16]Xiao J H, Li J M, Yuan L P, Tanksley S D. Dominance is the major genetic basis of the heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, 140: 745–754



[17]Lu H, Romero-Severson J, Bernarbo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet, 2003, 107: 494–502



[18]Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D. Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad SciUSA, 2006, 103: 12981–12986



[19]Krieger U, Lippman ZB, Zamir D. The flowering gene single flower truss drives heterosis for yield in tomato. Nat Genet, 2010, 42: 459–463



[20]Wang Z Q, Yu CY, Liu X, Liu S J, Yin C B, Liu L L, Lei J G, Jiang L, Yang C, Chen L M, Zhai H Q, Wan J M. Identification of indica rice chromosome segments for the improvement of Japonica inbreds and hybrids. Theor Appl Genet, 2012, 124: 1351–1364



[21]Meyer R C, Kusterer B, Lisec J, Steinfath M, Becher M, Scharr H, Melchinger AE, Selbig J, Schurr U, Willmitzer L, Altmann T. QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor Appl Genet, 2010, 120: 227–237



[22]Guo X, Guo Y, Ma J, Wang F, Sun M, Gui L J, Zhou J J, Song X L, Sun X Z, Zhang T Z. Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Integr Plant Biol, 2013, 55: 759–774



[22]Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823–839



[23]王懿波, 王振华, 王永普, 张新, 陆利行. 中国玉米主要种质杂交优势利用模式研究, 中国农业科学, 1997, 30(4) : 16–24



Wang Y B, Wang Z H, Wang Y P, Zhang X, Lu L X. Studies on the heterosis utilizing models of main maize germplasms in China. Sci Agric Sin, 1997, 30(4): 16–24(in Chinese with English abstract)



[24]滕文涛, 曹靖生, 陈彦惠, 刘向辉, 景希强, 张发军, 李建生. 十年来中国玉米杂种优势群及其模式变化的分析. 中国农业科学, 2004, 37: 1804–1811



Teng W T, Cao J S, Chen YH, Liu X H, Jing X Q, Zhang F J, Li J S. Analysis of maize heterotic groups and patterns during past decade in China. Sci Agric Sin, 2004,37: 1804–1811(in Chinese with English abstract)



[25]袁亮, 丁冬, 李卫华, 谢惠玲, 汤继华, 付志远. 玉米优良自交系单片段代换系的构建.玉米科学, 2012, 20(2): 52–55



Yuan L, Ding D, Li W H, Xie H L, Tang J H, Fu Z Y. Construction of single segment substitution lines (SSSLs) of the elite inbred lines in maize.J Maize Sci, 2012, 20(2): 52–55(in Chinese with English abstract)



[26]Duvick D N. Biotechnology in the 1930s: the development of hybrid maize. Nature, 2001, 2: 69–74



[27]Tang J H, Ma X Q, Teng W T, Yan J B, Wu W R, Dai J R, Li J S. Detection of quantitative trait loci and heterosis for plant height in maize in ‘‘immortalized F2’’ (IF2) population. Chin Sci Bull, 2006, 51:2864–2869



[28]Wei X Y, Wang B, Peng Q, Wei F, Mao K J, Zhang X G, Sun P, Liu Z H, Tang J H.  Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Mol Breed, 2015,35(3): 1–13



[29]Tang J H, Yan J B, Ma X Q, Teng W T, Dai J R, Dhillon B S, Melchinger A E. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an “immortalized F2” population. Theor Appl Genet, 2010, 120: 333–340



[30]王懿波, 王振华, 陆利行, 王永普, 张新, 田曾元. 中国玉米种质基础、杂种优势群划分与杂种优势模式研究. 玉米科学, 1998, 6(1): 9–13



Wang Y B, Wang Z H, Lu L H, Wang Y P, Zhang X, Tian Z Y. Studies on maize germplasm base, division of heterosis groups and utilizing models of heterosis in China. J Maize Sci, 1998, 6(1): 9–13(in Chinese with English abstract)



[31]吴金凤, 宋伟, 王蕊, 田红丽, 李雪, 王凤格, 赵久然, 蔚荣海. 利用SNP标记对51份玉米自交系进行类群划分. 玉米科学, 2014, 22(5): 29–34



Wu J F, Song W, Wang R, Tian H L, Li X, Wang F G, Zhao J R, Wei R H. Heteroticgroupingof51maizeinbredlinesbySNPmarkers. J Maize Sci, 2014, 22(5): 29–34(in Chinese with English abstract)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[11] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!