[1]Shull G H. The composition of a field of maize. J Heredity, 1908, 4: 296–301
[2]Bruce A B. The Mendelian theory of heredity and the augmentation of vigor. Science, 1910, 32:627–628
[3]Jones D F. Dominance of linked factors as a means of accounting for heterosis. Proc Natl Acad SciUSA, 1917, 3: 310–312
[4]East E M. Heterosis. Genetics, 1936, 21:375–397
[5]Yu S B, Li J X, Xu C G, Yan Y F, Gao Y J. Importance of epistasis as the genetic basis of the heterosis in an elite rice hybrid. Proc Natl Acad SciUSA, 1997, 94: 9226–9231
[6]Song R T, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad SciUSA, 2003, 100: 9055–9060
[7]Hoecker N, Keller B, Muthreich N, Chollet D, Descombes P, Piepho HP, Hochholdinger F. Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcription suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics, 2008, 179: 1275–1283
[8]Fu Z Y, Jin X N, Ding D, Li Y L, Fu Z J, Tang J H. Proteomic analysis of heterosis during maize seed germination. Proteomics, 2011, 11:1462–1472
[9]Ding D, Wang Y J, Han M S, Fu Z Y, Li W H, Liu Z H, Hu Y M, Tang J H. MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS One, 2012, 7(6):e39578
[10]Guo M, Rupe M A, Wei J, Winkler C, Goncalves-Butruille M, Weers B P, Cerwick S F, Dieter J A, Duncan K E, Howard R J, Hou Z, L?ffler C M, Cooper M, Simmons C R. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot, 2014, 65: 249–260
[11]严建兵, 汤华, 黄益勤, 石永刚, 李建生, 郑用琏. 不同发育时期玉米株高QTL的动态分析. 科学通报, 2003, 48: 1959–1964
Yan JB, Tang H, Huang Y Q, Si Y G, Li J S Zheng Y L. Dynamic QTL analysis for plant height in different developing stages in maize. Chin Sci Bull, 2003,48: 1959–1964(in Chinese with English abstract)
[12]Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson AH. Overdominance epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics, 2001, 158: 1737–1753
[13]Kusterer B, Muminovic J, Utz HF, Piepho HP, Barth S, Heckenberger M, Meyer R C, Altmann T, Melchinger A E. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics, 2007, 175: 2009–2017
[14]Kusterer B, Piepho HP, Utz HF, Muminovic J, Meyer R C, Altmann T, Melchinger A E. Heterosis for biomassrelated traits in Arabidopsis investigated by a novel QTL analysis of the triple testcross design with recombinant inbred lines. Genetics, 2007, 177:1839–1850
[15]Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad SciUSA, 2003,100: 2574–2579
[16]Xiao J H, Li J M, Yuan L P, Tanksley S D. Dominance is the major genetic basis of the heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, 140: 745–754
[17]Lu H, Romero-Severson J, Bernarbo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet, 2003, 107: 494–502
[18]Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D. Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad SciUSA, 2006, 103: 12981–12986
[19]Krieger U, Lippman ZB, Zamir D. The flowering gene single flower truss drives heterosis for yield in tomato. Nat Genet, 2010, 42: 459–463
[20]Wang Z Q, Yu CY, Liu X, Liu S J, Yin C B, Liu L L, Lei J G, Jiang L, Yang C, Chen L M, Zhai H Q, Wan J M. Identification of indica rice chromosome segments for the improvement of Japonica inbreds and hybrids. Theor Appl Genet, 2012, 124: 1351–1364
[21]Meyer R C, Kusterer B, Lisec J, Steinfath M, Becher M, Scharr H, Melchinger AE, Selbig J, Schurr U, Willmitzer L, Altmann T. QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor Appl Genet, 2010, 120: 227–237
[22]Guo X, Guo Y, Ma J, Wang F, Sun M, Gui L J, Zhou J J, Song X L, Sun X Z, Zhang T Z. Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Integr Plant Biol, 2013, 55: 759–774
[22]Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823–839
[23]王懿波, 王振华, 王永普, 张新, 陆利行. 中国玉米主要种质杂交优势利用模式研究, 中国农业科学, 1997, 30(4) : 16–24
Wang Y B, Wang Z H, Wang Y P, Zhang X, Lu L X. Studies on the heterosis utilizing models of main maize germplasms in China. Sci Agric Sin, 1997, 30(4): 16–24(in Chinese with English abstract)
[24]滕文涛, 曹靖生, 陈彦惠, 刘向辉, 景希强, 张发军, 李建生. 十年来中国玉米杂种优势群及其模式变化的分析. 中国农业科学, 2004, 37: 1804–1811
Teng W T, Cao J S, Chen YH, Liu X H, Jing X Q, Zhang F J, Li J S. Analysis of maize heterotic groups and patterns during past decade in China. Sci Agric Sin, 2004,37: 1804–1811(in Chinese with English abstract)
[25]袁亮, 丁冬, 李卫华, 谢惠玲, 汤继华, 付志远. 玉米优良自交系单片段代换系的构建.玉米科学, 2012, 20(2): 52–55
Yuan L, Ding D, Li W H, Xie H L, Tang J H, Fu Z Y. Construction of single segment substitution lines (SSSLs) of the elite inbred lines in maize.J Maize Sci, 2012, 20(2): 52–55(in Chinese with English abstract)
[26]Duvick D N. Biotechnology in the 1930s: the development of hybrid maize. Nature, 2001, 2: 69–74
[27]Tang J H, Ma X Q, Teng W T, Yan J B, Wu W R, Dai J R, Li J S. Detection of quantitative trait loci and heterosis for plant height in maize in ‘‘immortalized F2’’ (IF2) population. Chin Sci Bull, 2006, 51:2864–2869
[28]Wei X Y, Wang B, Peng Q, Wei F, Mao K J, Zhang X G, Sun P, Liu Z H, Tang J H. Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Mol Breed, 2015,35(3): 1–13
[29]Tang J H, Yan J B, Ma X Q, Teng W T, Dai J R, Dhillon B S, Melchinger A E. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an “immortalized F2” population. Theor Appl Genet, 2010, 120: 333–340
[30]王懿波, 王振华, 陆利行, 王永普, 张新, 田曾元. 中国玉米种质基础、杂种优势群划分与杂种优势模式研究. 玉米科学, 1998, 6(1): 9–13
Wang Y B, Wang Z H, Lu L H, Wang Y P, Zhang X, Tian Z Y. Studies on maize germplasm base, division of heterosis groups and utilizing models of heterosis in China. J Maize Sci, 1998, 6(1): 9–13(in Chinese with English abstract)
[31]吴金凤, 宋伟, 王蕊, 田红丽, 李雪, 王凤格, 赵久然, 蔚荣海. 利用SNP标记对51份玉米自交系进行类群划分. 玉米科学, 2014, 22(5): 29–34
Wu J F, Song W, Wang R, Tian H L, Li X, Wang F G, Zhao J R, Wei R H. Heteroticgroupingof51maizeinbredlinesbySNPmarkers. J Maize Sci, 2014, 22(5): 29–34(in Chinese with English abstract) |