作物学报 ›› 2016, Vol. 42 ›› Issue (04): 469-481.doi: 10.3724/SP.J.1006.2016.00469
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
王婷婷,丛亚辉,柳聚阁,王宁帅,琴李艳*,盖钧镒*
WANG Ting-Ting,CONG Ya-Hui,LIU Ju-Ge,WANG Ning,SHUAI Qin,LI Yan*,GAI Jun-Yi*
摘要:
WRKY转录因子参与调节植物生长发育、生物与非生物胁迫应答等多种过程,AtWRKY28是拟南芥中与抗病和耐逆相关的重要转录因子。为探讨大豆中一个AtWRKY28同源基因GmWRKY28-like(Glyma.14G028900)的生物学功能,本文对该基因进行了克隆、生物信息学分析、亚细胞定位、组织表达等试验,并对其在ABA、PEG、NaCl胁迫下的表达水平进行了分析。结果显示,GmWRKY28-like基因的编码区(CDS)为1008bp,编码335个氨基酸。GmWRKY28-like蛋白具有保守的WRKY结构域,含有22个丝氨酸(Serine)、1个苏氨酸(Threonine)、2个酪氨酸(Tyrosine),不含跨膜结构与信号肽;进化树分析表明大豆GmWRKY28-like与菜豆(Phaseolus vulgaris)WRKY28的相似性最高;亚细胞定位显示GmWRKY28-like定位在细胞核中。该基因在根、种子中表达量很低,在真叶、花、及茎尖分生组织表达量较高。GmWRKY28-like启动子中含有多种与生物和非生物逆境胁迫应答相关的元件,如MBS、W-box、ABRE、Box-W1等,且表达受到ABA、PEG、NaCl的诱导。此外,过表达GmWRKY28-like显著增强了拟南芥的耐盐性。
[1]von Koskull-Döring P, Scharf KD, Nover L. The diversity of plant heat stress transcription factors. Trends Plant Sci, 2007, 12: 452–457 [2]Nakashima K, Yamaguchi-Shinozaki K. Molecular studies on stress-responsive gene expression in Arabidopsis and improvement of stress tolerance in crop plants by regulon biotechnology. Jpn Agric Res Quart, 2005, 39: 221–229 [3]Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J, 2008, 6: 486–503 [4]Jiang Y, Deyholos M K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol, 2009, 69: 91–105 [5]Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol, 2007, 10: 366–371 [6]Christian A. Ross, Yue Liu, Qingxi J. The WRKYgene family in rice (Oryza sativa). J Integr Plant Biol, 2007, 49: 827–842 DOI: 10.1111/j.1744-7909.2007.00504.x [7]Eulgem T , Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5: 199–206 [8]Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003, 51: 21–37 [9]Brand L H, Kirchler T, Hummel S, Chaban C, Wanke D. DPI-ELISA: a fast and versatile method to specify the binding of plant transcription factors to DNA in vitro. Plant Methods, 2010, 6: 25 [10]Lagacé M, Matton D P. Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta, 2004, 219: 185-189 [11]Johnson C S, Kolevski B, and Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell, 2002, 14: 1359–1375 [12]Huang T, Duman J G. Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Mol Biol, 2002, 48: 339–350 [13]Yoda H, Ogawa M, Yamaguchi Y, Koizumi N, Kusano T, Sano H. Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants. Mol Genet Genom, 2002, 267: 154–161 [14]Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate-and jasmonate-dependent signaling. Mol Plant, Mol Plant Microbe Interact, 2007, 20: 492-499 [15]Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L, Wang S. Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant, 2008, 1: 538–551 [16]Yu F,Huaxia Y,Lu W,Wu C,Cao X,Guo X. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development.BMC Plant Biol, 2012, 12: 144 [17]Wang X,Yan Y,Li Y,Chu X,Wu C,Guo X. GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to ralstonia solanacearum infection in transgenic Nicotiana benthamiana.PLoS One, 2014, 18: e93577 [18]Chen L, Zhang L, Li D, Wang F, Yu D. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA, 2013, 110: 1963–1971 [19]Lan A,Huang J,Zhao W,Peng Y,Chen Z,Kang D. A salicylic acid-induced rice (Oryza sativa L.) transcription factor OsWRKY77 is involved in disease resistance of Arabidopsis thaliana. Plant Biol (Stuttg), 2013, 15: 452–461 [20]Peng Y, Bartley L E, Chen X, Dardick C, Chern M, Ruan R, Canlas P E, Ronald P C. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol Plant, 2008, 1: 446–458 [21]Pandey S P, Somssich I E. The role of WRKY transcription factors in plant immunity. Plant Physiol, 2009, 150: 1648–1655 [22]Zheng Z, Qamar S A, Chen Z, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J, 2006, 48: 592–605 [23]Wang D, Amornsiripanitch N, Dong X. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog, 2006, 2: 1042–1050 [24]Lai Z, Vinod K, Zheng Z, Fan B, Chen Z. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol, 2008, 8:68 [25]Hu Y, Dong Q, Yu D. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci, 2012, 185: 288–297 [26]钟贵买, 伍林涛, 王健美, 杨毅, 李旭锋. 转录因子AtWRKY28亚细胞定位及在非生物胁迫下的表达分析. 中国农业科技导报, 2012, 14(5):57–63 Zhong G M, Wu L T, Wang J M, Yang Y, Li X F. Subcellular localization and expression analysis of transcription factor AtWRKY28 under biotic stresses. J Agric Sci Technol, 2012, 14(5): 57–63 (in Chinese with English abstract) [27]Wu L T, Zhong G M, Wang J M, Li X F, Song X, Yang Y. Arabidopsis WRKY28 transcription factor is required for resistance to necrotrophic pathogen, Botrytis cinerea. Afr J Microbiol Res, 2011, 5: 5481–5488 [28]张飞萃. 拟南芥WRKY28和WRKY42调控磷吸收和转运的机制研究.中国农业大学博士学位论文, 北京, 2015 Zhang F C. Regulatory mechanism of phosphate translocation and acquisition by AtWRKY28 and AtWRKY42 inArabidopsisplants. PhD Dissertation of ChinaAgriculturalUniversity, Beijing, China, 2015 (in Chinese with English abstract) [29]Chen X, Liu J, Lin G, Wang A, Wang Z, Lu G. Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Rep, 2013, 32: 1589–1599 [30]Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007, 2: 1565–1572 [31]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C (T)) method. Methods, 2001, 25: 402–408 [32]Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA, 2000, 97: 11632–11637 |
[1] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[2] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[3] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[4] | 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321. |
[5] | 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127. |
[6] | 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857. |
[7] | 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512. |
[8] | 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638. |
[9] | 贾小霞,齐恩芳,刘石,文国宏,马胜,李建武,黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响[J]. 作物学报, 2019, 45(8): 1166-1175. |
[10] | 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016. |
[11] | 殷龙飞,王朝阳,吴忠义,张中保,于荣. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7): 1029-1037. |
[12] | 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379. |
[13] | 柯丹霞,彭昆鹏,张孟珂,贾妍,王净净. 大豆GmHDL57基因的克隆及抗盐功能鉴定[J]. 作物学报, 2018, 44(9): 1347-1356. |
[14] | 张玉杰,张园园,张华宁,秦宁,李国良,郭秀林. 小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探[J]. 作物学报, 2018, 44(12): 1818-1828. |
[15] | 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244. |
|