欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (03): 389-397.doi: 10.3724/SP.J.1006.2013.00389

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

茶树生长素响应因子基因CsARF1的克隆与表达分析

郝心愿1,2,曹红利2,杨亚军2,*,王新超2,*,马春雷2,肖斌1   

  1. 1 西北农林科技大学园艺学院,陕西杨凌 712100;2 中国农业科学院茶叶研究所 / 国家茶树改良中心 / 农业部茶树生物学与资源利用重点实验室,浙江杭州 310008
  • 收稿日期:2012-07-20 修回日期:2012-11-05 出版日期:2013-03-12 网络出版日期:2013-01-04
  • 通讯作者: 杨亚军, E-mail: yjyang@mail.tricaas.com; 王新超, E-mail: xcw75@mail.tricaas.com, Tel: 0571-86653162
  • 基金资助:

    本研究由国家自然科学基金项目(30872059, 31170650), 浙江省自然科学基金重点项目(Z3100473)和国家现代农业产业技术体系建设专项(CARS-23)资助。

Cloning and Expression Analysis of Auxin Response Factor Gene (CsARF1) in Tea Plant (Camellia sinensis [L.] O. Kuntze)

HAO Xin-Yuan1,2,CAO Hong-Li2,YANG Ya-Jun2,*,WANG Xin-Chao2,*,MA Chun-Lei2,XIAO Bin1   

  1. 1 College of Horticulture, Northwest A&F University, Yangling 712100, China; 2 Tea Research Institute of Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
  • Received:2012-07-20 Revised:2012-11-05 Published:2013-03-12 Published online:2013-01-04
  • Contact: 杨亚军, E-mail: yjyang@mail.tricaas.com; 王新超, E-mail: xcw75@mail.tricaas.com, Tel: 0571-86653162

摘要:

生长素响应因子(ARFs)是能够与生长素原初反应基因启动子区的生长素响应基元(TGTCTC)特异结合的一类转录因子,调控生长素应答基因的表达。采用SMART-RACE-PCR技术,获得茶树生长素响应因子基因CsARF1的全长cDNA序列(GenBank登录号为JX307853),并进行了生物信息学分析和表达分析。CsARF1基因cDNA全长3222 bp,包含2463 bp的开放阅读框(ORF),编码820个氨基酸残基。编码蛋白的分子量为49.35 kD,具有保守的NDNA结合域B3C端二聚化结构域IAA_ARF,中间区域富含谷氨酸、丝氨酸和亮氨酸,是一个定位于细胞质的具有激活转录功能的可溶性蛋白。相似性及系统进化分析表明,该基因编码的氨基酸序列与葡萄ARF8的相似性最高(83%),与番茄ARF8的亲缘关系最近。利用实时荧光定量PCR技术,检测该基因在茶树越冬芽休眠到萌发后不同时期的表达情况。结果显示CsARF1在茶树越冬芽深休眠和萌动期表达量较高,表明该基因与茶树越冬芽的休眠维持及解除密切相关。

关键词: 茶树, 休眠, 生长素响应因子, 表达分析

Abstract:

Auxin response factors (ARFs) are transcription factors that bind to TGTCTC auxin response elements in promoters of early/primary response genes and regulate the expression of auxinresponse genes. The full-length cDNA of one ARF gene named CsARF1 (GenBank accession number JX307853) was firstly cloned from tea plant (Camellia sinensis [L.] O. Kuntze) by SMART-RACE-PCR. The results indicated that the full-length cDNA of CsARF1 was 3222 bp containing 2463 bp ORF which encoded 820 amino acid residues with a putative molecular mass of 49.35 kD. The soluble protein encoded by CsARF1 functioned in the cytoplasm and consisted of an amino-terminal DNA-binding domain (B3), a carboxy-terminal dimerization domain (IAA_ARF), and a Gln, Ser and Leu-rich middle region, which is proposed to function as an activation domain. Blast and phylogenetic analysis showed that the protein encoded by CsARF1 shared the highest identity (83%) with ARF8 in Vitisvinifera, and had close genetic relationship with ARF8 in Solanumlycopersicum. The expression analysis of CsARF1 conducted by qRT-PCT during the different phases of bud dormancy and bud break indicated that CsARF1 had a marked rise in the expression level at deep dormant stage and sprouting stage, demonstrating that CsARF1 is relevant to the regulation of tea plant bud dormancy and bud break.

Key words: Tea plant (Camellia sinensis), Dormancy, Auxin response factor, Expression analysis

[1]Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell, 2009, 136: 1005–1016



[2]Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol, 2002, 49: 373–385



[3]Guilfoyle T J, Hagen G. Auxin response factors. Curr Opin Plant Biol, 2007, 10: 453–460



[4]Ulmasov T, Hagen G, Guilfoyle T J. ARF1, a transcription factor that binds to auxin response elements. Science, 1997, 276: 1865–1868



[5]Tiwari S B, Hagen G, Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell Online, 2003, 15: 533–543



[6]Ouellet F, Overvoorde P J, Theologis A. IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell Online, 2001, 13: 829–842



[7]Kepinski S, Leyser O. Ubiquitination and auxin signaling: a degrading story. Plant Cell Online, 2002, 14: S81–S95



[8]Rogg L E, Bartel B. Auxin Signaling: Derepression through Regulated Proteolysis. Dev Cell, 2001, 1: 595–604



[9]Sato Y, Nishimura A, Ito M, Ashikari M, Hirano H Y, Matsuoka M. Auxin response factor family in rice. Genes Genet Syst, 2001, 76: 373–380



[10]Horvath D P, Anderson J V, Chao W S, Foley M E. Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci, 2003, 8: 534–540



[11]Rohde A, Bhalerao R P. Plant dormancy in the perennial context. Trends Plant Sci, 2007, 12: 217–223



[12]Wang X-C(王新超), Yang Y-J(杨亚军), Chen L(陈亮), Ma C-L(马春雷), Yao M-Z(姚明哲). Construction and preliminary analysis of the suppression subtractive hybridization cDNA libraries between dormant and sprouting buds of tea plant (Camellia sinensis). J Tea Sci (茶叶科学), 2010, 30(2): 129–135 (in Chinese with English abstract)



[13]Wang X-C(王新超), Yang Y-J(杨亚军), Ma C-L(马春雷), Jin J-Q(金基强), Ma J-Q(马建强), Cao H-L(曹红利). Cloning and expression analysis of cyclin gene (CsCYC1) of tea plant. Acta Bot Boreal-Occident Sin (西北植物学报), 2011, 31(12): 2365–2372 (in Chinese with English abstract)



[14]Wang X-C(王新超), Ma C-L(马春雷), Yang Y-J(杨亚军), Jin J-Q(金基强), Ma J-Q(马建强), Cao H-L(曹红利). cDNA cloning and expression analysis of cyclin-dependent kinase (CsCDK) gene in tea plant. Acta Hort Sin (园艺学报), 2012, 39(2): 333–342 (in Chinese with English abstract)



[15]Zhao L-P(赵丽萍), Chen L(陈亮), Wang X-C(王新超), Yao M-Z(姚明哲). Quantitative detection of β-glucosidase and β-primeverosidase gene expression in different leaves of tea plant (Camellia sinensis) by real-time PCR analysis. J Tea Sci (茶叶科学), 2006, 26(1): 11–16 (in Chinese with English abstract)



[16]Ulmasov T, Hagen G, Guilfoyle T J. Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA, 1999, 96: 5844–5849



[17]Wang S, Tiwari S B, Hagen G, Guilfoyle T J. AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts. Plant Cell Online, 2005, 17: 1979–1993



[18]Shimizu-Sato S, Tanaka M, Mori H. Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol, 2009, 69: 429–435



[19]Nagar P K, Sood S. Changes in endogenous auxins during winter dormancy in tea (Camellia sinensis L.) O. Kuntze. Acta Physiol Plant, 2006, 28: 165–169

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[4] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[5] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[6] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[7] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[8] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[9] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[10] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[11] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[12] 李竟才, 王强林, 宋威武, 黄维, 肖桂林, 吴承金, 顾钦, 宋波涛. 基于侯选基因标记的四倍体马铃薯休眠QTL关联分析[J]. 作物学报, 2020, 46(9): 1380-1387.
[13] 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2aGmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032.
[14] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[15] 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!