欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1284-1292.doi: 10.3724/SP.J.1006.2013.01284

• 耕作栽培·生理生化 • 上一篇    下一篇

不同春玉米品种花后光合物质生产特点及碳氮含量变化

孙雪芳1,丁在松1,*,侯海鹏1,葛均筑2,唐丽媛3,赵明1,*   

  1. 1中国农业科学院作物科学研究所/农业部作物生理生态与栽培重点开放实验室,北京100081;2华中农业大学植物科技学院,湖北武汉430070;3中国农业大学农学与生物技术学院,北京 100193
  • 收稿日期:2012-06-06 修回日期:2013-03-11 出版日期:2013-07-12 网络出版日期:2013-04-23
  • 通讯作者: 赵明, E-mail: zhaomingcau@163.net, Tel: 010-82108752; 丁在松, E-mail: dingzaisong@caas.cn
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(NYCYTX-02),国家重点基础研究发展计划(973计划)项目(2009CB118605)和中国农业科学院作物科学研究所中央级公益性科研院所基本科研业务费专项资助。

Post-Anthesis Photosynthetic Assimilation and the Changes of Carbon and Nitrogen in Different Varieties of Spring Maize

SUN Xue-Fang1,DING Zai-Song1,*,HOU Hai-Peng1,GE Jun-Zhu2,TANG Li-Yuan3,ZHAO Ming1,*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Ecophysiology and Cultivation, Ministry of Agriculture, Beijing 100081, China; 2 College of Plant Science & Technology of Huazhong Agricultural University, Wuhan 430070, China; 3 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
  • Received:2012-06-06 Revised:2013-03-11 Published:2013-07-12 Published online:2013-04-23
  • Contact: 赵明, E-mail: zhaomingcau@163.net, Tel: 010-82108752; 丁在松, E-mail: dingzaisong@caas.cn

摘要:

玉米高产实践表明增加花后干物质生产对于产量的进一步增加具有重要作用。为了探明高产条件下花后干物质生产增加的原因,本研究比较了玉米品种登海661 (DH661)、中单909 (ZD909)970的产量差异,并利用产量性能分析理论剖析了花后的产量性能参数,分析了花后主要功能叶穗位叶的叶绿素含量、净光合速率和碳、氮含量的变化。结果表明,品种间的产量差异显著,产量较高的品种(DH661ZD909)具有较高的穗粒重,而DH661具有较多的穗粒数(466.7)ZD909具有较高的粒重(392.7 g)产量较高的品种后期干物质生产及其向籽粒的分配比例高,产量性能分析表明花后的平均叶面积指数(mLAI)及光合势(LAD)与干物质生产及产量均呈显著正相关;产量较高的品种花后穗位叶叶绿素、全碳和全氮含量下降慢,碳氮比值增加慢,光合速率在整个灌浆期相对较高,光合产物不仅向籽粒运转,还能在叶片中以淀粉的形式持续积累,在后期随着光合速率的下降,淀粉才开始降解向籽粒运输。可见玉米花后碳氮代谢协调、光合作用和物质生产能力衰减缓慢对于有效维持较高平均叶面积指数和光合势,进一步提高作物产量具有重要意义。

关键词: 干物质, 光合势, 平均叶面积指数, 光合速率, 可溶性糖, 淀粉, 碳氮比

Abstract:

Dry matters production after anthesis is very important for maize yield. To further clear its role in super high yield condition (high density with ample water and fertilizer supply), we compared yield components in three cultivated varieties, including Denghai661 (DH661), Zhongdan 909 (ZD909) and 970. According to the theory of yield performance, the post-anthesis yield performance parameters were analyzed. The changes of net photosynthetic rate, the contentsof chlorophyll, soluble sugar, starch, total C and N were measured in the ear leaf. The results showed thatthere were significant differences in the yield among three varieties. Varieties with higher yield (DH661 and ZD909) had higher kernel weight per ear, while DH661 had more grains per ear (466.7) and ZD909 had higher 1000-kernel weight (392.7 g).The post-anthesis dry matter production and its partitive ratios in grains were both higher in the two varieties with higher yield. Yield performance analysis showed that the mean leaf area index (mLAI) and leaf area duration (LAD) were significantly and positively correlated with post-anthesis dry matter production and yield. The chlorophyll, total carbon and total nitrogen content decreased slowly and C/N ratio increased slowly in the two varieties with higher yield. The net photosynthetic rate (Pn) was relatively higher in the ear leaves in the whole grain filling stage. The photosynthate not only supplied to kernels but also stored as starch in leaves at the early phase of grain filling. Only when Pn declined at late phase of grain filling the accumulated starch began to degrade for the kernel filling. These results indicated that the balance between carbon and nitrogen metabolism, and slowing down the photosynthate decrease in ear leaf are responsible for maintaining higher mLAI and LAD, resulting in higher yield.

Key words: Dry matter, LAD, mLAI, Photosynthetic rate, Soluble sugar, Starch, C/N ratio

[1]Abolhassan M, Herbert S J, Putnam D H. Yield response of corn to crowding stress. Agron J, 2005, 97: 839−846



[2]Hu C-H(胡昌浩), Dong S-T(董树亭), Yue S-S(岳寿松), Wang Q-Y(王群瑛), Gao R-Q(高荣岐), Pan Z-L(潘子龙). Studies on the relationship between canopy apparent photosynthesis rate and grain yield in high yielding summer corn (Zea may L.). Acta Agron Sin (作物学报), 1993, 19(1): 63−69 (in Chinese with English abstract)



[3]Lu W-P(陆卫平), Chen G-P(陈国平), Guo J-L(郭景伦), Wang Z-X(王忠孝), Rao C-F(饶春富). Study on the source and sink in relation to grain yield under different ecological areas in maize. Acta Agron Sin (作物学报), 1997, 23(6): 727-733 (in Chinese with English abstract)



[4]Qi H(齐华), Liang Y(梁熠), Zhao M(赵明), Wang J-Y(王敬亚), Wu Y-N(吴亚男), Liu M(刘明). The effects of cultivation ways on population structure of maize. Acta Agric Boreali-Sin (华北农学报), 2010, 36(5): 871−878 (in Chinese with English abstract)



[5]Huang Z-H(黄智鸿), Wang S-Y(王思远), Bao Y(包岩), Liang X-H(梁煊赫), Sun G(孙刚), Shen L(申林), Cao Y(曹洋), Wu C-S(吴春胜). Studies on dry matter accumulation and distributive characteristic in super high-yield maize. J Maize Sci (玉米科学), 2007, 15(3): 95−98 (in Chinese with English abstract)



[6]Yang H-S(杨恒山), Zhang Y-Q(张玉芹), Xu S-J(徐寿军), Li G-H(李国红), Gao J-L(高聚林), Wang Z-G(王志刚). Characteristics of dry matter and nutrient accumulation and translocation of super-high-yield spring maize. Plant Nutr Fert Sci (植物营养与肥料学报), 2012, 38(6): 1080−1087 (in Chinese with English abstract)



[7]Li S-K(李少昆). A discussion on the relationship between leaf photosynthetic rate and crop yield. J Shihezi Univ (Nat Sci)(石河子大学学报?自然科学版), 1998, (suppl-1): 117−126 (in Chinese with English abstract)



[8]Xu Q-Z(徐庆章), Wang Q-C(王庆成), Zhang X-Q(张秀清), Wang C-Y(王春英), Zhang H-L(张海林). Studies on relationship between plant type and canopy photosynthesis in maize. Acta Agron Sin (作物学报), 1995, 21(4): 492–496 (in Chinese with English abstract)



[9]Dong S-T(董树亭), Gao R-Q(高荣岐), Hu C-H (胡昌浩), Wang Q-Y(王群瑛), Wang K-J(王空军). Study of canopy photosynthesis property and high yield potential after anthesis in maize. Acta Agron Sin (作物学报), 1997, 23(3): 318−325 (in Chinese with English abstract)



[10]Shi H-Z(史宏志), Han J-F(韩锦峰). Study on several issues about carbon and nitrogen metabolism on tobacco. Tobacco Sci & Technol (烟草科技), 1998, (2): 34−36 (in Chinese with English abstract)



[11]Dai M-H(戴明宏), Zhao J-R(赵久然), Yang G-H(杨国航), Wang R-H(王荣焕), Chen G-P(陈国平). Source-sink relationship and carbon-nitrogen metabolism of maize in different ecological regions and varieties. Sci Agric Sin (中国农业科学), 2011, 44(8): 1585−1595 (in Chinese with English abstract)



[12]Zhao M(赵明), Wang S-A(王树安), Li S-K(李少昆) . Model of the three combination structure of crop yield analysis. Acta Agric Univ Pekinensis (北京农业大学学报), 1995, 21(4): 359−364 (in Chinese with English abstract)



[13]Zhang B(张宾), Zhao M(赵明), Dong Z-Q(董志强), Chen C-Y(陈传永), Sun R(孙锐). Three combination structure quantitative expression and high yield analysis in crops. Acta Agron Sin (作物学报), 2007, 33(10): 1674–1681 (in Chinese with English abstract)



[14]Zhao S-J(赵世杰). Experimental Guide for Plant Physiology (植物生理学试验指导). Beijing: Chinese Agricultural Science and Technology Press, 2000 (in Chinese)



[15]Zhang X-Z(张宪政), Chen F-Y(陈风玉), Wang R-F(王荣富). Plant Physiology Experimental Technology (植物生理学试验技术). Shenyang: Liaoning Science and Technology Publishing House, 1994 (in Chinese)



[16]Ge T-D(葛体达), Huang D-F(黄丹枫), Song S-W(宋世威), Lu B(芦波), Yang D-D(杨冬冬). Effects of nitrogen forms on carbon and nitrogen accumulation in tomato seedling. Sci Agric Sin (中国农业科学), 2008, 41(10): 3168−3176 (in Chinese with English abstract) 



[17]Gan T, Liang B C, Liu L P, Wang X Y,  McDonald C L. C:N ratios and carbon distribution pro?le across rooting zones in oilseed and pulse crops. Crop Pasture Sci, 2011, 62: 496–503



[18]Shen X-Y(沈秀瑛), Dai J-Y(戴俊英), Hu A-C(胡安畅), Gu W-L(顾慰连), Zheng B(郑波). Studies on relationship among character of canopy light interception and yield in maize populations (Zea mays L.). Acta Agron Sin (作物学报), 1993, 19(3): 246–252 (in Chinese with English abstract) 



[19]Ma G-S(马国胜), Xue J-Q(薛吉全), Lu H-D(路海东), Ren J-H(任建宏). Photosynthetic and physiological characteristics of the populations of different types of silage maize. Acta Bot Boreali-Occident Sin (西北植物学报), 2005, 25(3): 536–540 (in Chinese with English abstract)



[20]Jiang Z-H(蒋钟怀), Wang J-W(王经武), Wang R-F(王瑞舫), Zheng P-Y(郑丕尧). Studies on the changing rule of net photosynthetic rates in individual leaf blades of summer maize Jingzao 7. Acta Agric Univ Pekinensis(华北农学报), 1988, 3(1): 21–27 (in Chinese with English abstract)



[21]Paul M J, Driscoll S P. Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen de?ciency through source:sink imbalance. Plant Cell Environ, 1997, 20(1): 110–116



[22]Martin T, Oswald O, Graham I A. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiol, 2002, 128(2): 472–481



[23]Wingle A, Purdy S, MacLean J A, Pourtau N. The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot, 2006, 57(2): 391–399 



[24]Tanaka A, OsakI M. Growth and behavior of photosynthesized 14C in various crops in relation to productivity. Soil Sci Plant Nutr, 1983, 29: 147–158



[25]Cao N(曹娜), Yu H-Q(于海秋), Wang S-B(王绍斌), Yu T(于挺), Cao M-J(曹敏建). Analysis on canopy structure and photosynthetic characteristics of high yield maize population. J Maize Sci (玉米科学), 2006, 14(5): 94–97(in Chinese with English abstract)



[26]Liu K-L(刘克礼), Sheng J-H(盛晋华). A study on chlorophyll content and photosynthetic rate of spring maize. J Inner Mongolia Inst Agric & Anim Husbandry (内蒙古农牧学院学报), 1998, 19(2): 51−54 (in Chinese with English abstract)



[27]Walker D A. Regulatory Mechanism in Photosynthetic Carbon Mechanism. Current Topic in Cellular Regulation. New York: Academic Press, 1976



[28]Osaki M, Makoto L, Toshiaki T. Ontogenetic changes in the contents of Ribulose-l,5-Bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, and chlorophy II individual leaves of maize. Soil Sci Plant Nutr, 1995, 41: 285–293



[29]Chen C-Y(陈传永), Hou H-P(侯海鹏), Li Q(李强), Zhu P(朱平), Zhang Z-Y(张振勇), Dong Z-Q(董志强), Zhao M(赵明). Effects of panting density on photosynthetic characteristics and changes of carbon and nitrogen in leaf of different corn hybrids. Acta Agron Sin (作物学报), 2010, 36(5): 871−878 (in Chinese with English abstract)

[1] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[2] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[5] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[6] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[7] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550.
[8] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[9] 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响[J]. 作物学报, 2021, 47(7): 1324-1331.
[10] 吴雅薇, 蒲玮, 赵波, 魏桂, 孔凡磊, 袁继超. 不同耐低氮性玉米品种的花后碳氮积累与转运特征[J]. 作物学报, 2021, 47(5): 915-928.
[11] 杨帆, 钟晓媛, 李秋萍, 李书先, 李武, 周涛, 李博, 袁玉洁, 邓飞, 陈勇, 任万军. 再生稻次适宜区迟播栽对不同杂交籼稻淀粉RVA谱的影响[J]. 作物学报, 2021, 47(4): 701-713.
[12] 韦还和, 张徐彬, 葛佳琳, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 甬优籼粳杂交稻栽后地上部干物质积累动态与特征分析[J]. 作物学报, 2021, 47(3): 546-555.
[13] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[14] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[15] 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!