欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1309-1318.doi: 10.3724/SP.J.1006.2013.01309

• 研究简报 • 上一篇    下一篇

光子陆地棉种质资源主要性状的遗传评价

孙亚莉1,2,何守朴1,孙君灵1,潘兆娥1,贾银华1,庞保印1,杜雄明1,*   

  1. 1中国农业科学院棉花研究所 / 棉花生物学国家重点实验室,河南安阳455000; 2 山西农业大学信息学院,山西太谷 030800
  • 收稿日期:2012-08-30 修回日期:2013-01-15 出版日期:2013-07-12 网络出版日期:2013-03-26
  • 通讯作者: 杜雄明, E-mail: dxm630723@163.com, Tel: 0372-2562252
  • 基金资助:

    本研究由农业部作物种质资源保护项目(NB2012-2130135-30)和国家高技术研究发展计划(863计划)项目(2011AA10A102)资助。

Genetic Evaluation of Major Traits in Fuzzless Upland Cotton Germplasm

SUN Ya-Li1,2,HE Shou-Pu1,SUN Jun-Ling1,PAN Zhao-E1,JIA Yin-Hua1,PANG Bao-Yin1,Du Xiong-Ming1,*   

  1. 1 Cotton Research Institute, Chinese Academy of Agricultural Sciences / State Key Laboratory of Cotton Biology, Anyang 455000, China; 2 College of Information, Shanxi Agricultural University, Taigu 030800, China
  • Received:2012-08-30 Revised:2013-01-15 Published:2013-07-12 Published online:2013-03-26
  • Contact: 杜雄明, E-mail: dxm630723@163.com, Tel: 0372-2562252

摘要:

102份光子陆地棉材料为母本,分别与遗传标准系TM-1杂交,获得102F1群体。采用随机区组设计,设置3个重复,对光子陆地棉材料主要性状进行遗传评价。结果表明,调查的11个性状表型差异均较大,材料间产量性状(株高、果枝数、铃数、铃重、衣分和子指)差异大于纤维品质性状(纤维长度、纤维强度、马克隆值、整齐度和伸长率),特别是衣分、铃数等性状差异更明显; 除果枝数、马克隆值、伸长率以外,光子亲本群体其他性状的平均值都小于F1群体。而亲本群体所有性状的变异系数均大于F1,不同光子材料的杂种优势有很大差别,中亲优势和超亲优势也有很大的差别,有些种质某些性状的中亲、超亲优势为负值,其后代性状表现劣势; 纤维品质性状的中亲、超亲优势与毛子程度均呈负相关,而产量性状的中亲、超亲优势与毛子程度均呈正相关,说明可利用光子材料杂种优势改良纤维品质,而其后代产量性状的杂种优势利用受到限制; SSR分子标记遗传相似系数与各个性状的中亲、超亲优势的相关都不显著,说明在光子材料的育种中,杂种优势是不能通过亲本之间的遗传背景相似程度来预测的。

关键词: 陆地棉, 光子材料, 杂种优势

Abstract:

A total of 102 fuzzless seed upland cotton varieties (G. hirsutum) as female parents were crossed with genetic standard line TM-1 (as male parent) to analyze the main traits in the F1 population with random blocks design with three replications. The results showed that there were significant differences among eleven agronomic traits between different parents, and the difference of yield traits (plant height, fruit branch number, boll number, boll weight, lint percentage, and seed index) was higher than that of fiber quality traits (length, strength, micronaire, uniformity, elongation rate), especially for lint percentage, boll number, except for fruit branch number, micronaire and elongation rate, the mean values of other traits in parent populations were lower than those in F1 populations, however, the coefficient of variation in fuzzless seed parents was higher than that of F1. The heterosis including mid-parent heterosis and heterobeltiosis highly varied in different varieties. Some traits of some varieties with negative heterosis showed inferior descendants, The mid-parent heterosis and heterobeltiosis in fiber quality traits showed negative correlation with fuzzless rate, but yield traits showed positive correlation with fuzzless rate, indicating that the heterosis could be applied for fiber quality improvement but might be limited for the yield improvement, No significant correlation was found between genetic similarity coefficients based on SSR markers and heteroses in all traits, indicating that it is difficult to predict heterosis by using genetic background similarity of parents in fuzzless cotton breeding.

Key words: Upland cotton, Fuzzless materials, Heterosis

[1]Wang S-H(王素会), Du X-M(杜雄明). Advances in researches on molecular biology of two fiber-mutant. Cott Sci (棉花学报), 2003, 15(6): 376–379 (in Chinese with English abstract)



[2]Ji S J, Lu Y C, Li J, Wei G, Liang X J, Zhu Y X. A β-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast. Biochem Biophys Res Commun, 2002, 296: 1245–1250



[3]Wang S, Wang J W, Yu N, Li C H, Luo B, Gou J Y, Wang L J, Chen X Y. Control of plant trichome development by a cotton fiber MYB gene. Plant Cell, 2004, 16: 2323–2334



[4]Ware J O, Benedict L N, Rolfe W H. A recessive naked-seed character in upland cotton. J Hered, 1947, 38: 313–320



[5]Kearney T H, Harrison G J. The inheritance of smoothness seeds in cotton. J Agric Res, 1927, 35: 193–217



[6]Musaev D A, Abzalov M M. Some questions concerning the inheritance of fuzzy in cotton seeds (G. hirsutum L.). Genetika, 1972, 8: 7–16 (in Russian)



[7]Zhang T Z, Pan J J. Genetic analysis of a fuzzless-lintless mutant in Gossypium hirsutum L. J Jiangsu Agic Coll (江苏农业学报), 1991, 7(3): 13–16 (in Chinese)



[8]Chen J-X(陈金湘), Li R-L(李瑞莲), Chen B-Y(陈步阳). Study on fiber characteristics of F1 and F2 hybrid cotton. Cott Sci (棉花学报), 2004, 16(6): 338–342 (in Chinese with English abstract)



[9]Wang R-X(王仁祥), Zhou Z-H(周仲华), Chen J-X(陈金湘). Comparison of characters between obverse cross and inverse cross of insectresistance hybrid cotton of F1 population. Cott Sci (棉花学报), 2006, 18(1): 32–36 (in Chinese with English abstract)



[10]Zhu Q-Z(朱青竹), Zhao G-Z(赵国忠), Li A-G(李爱国), Ge L-W(盖丽雯). Analysis on heterosis and diversity of main characters of different transgenic cotton. Cott Sci (棉花学报), 2004, 16(4): 202–205 (in Chinese with English abstract)



[11]Hao J-J(郝俊杰). Genetic Analysis of Heterosis and Other Traits in Upland Cotton. PhD Dissertation of Huazhong Agricultural University, 2008 (in Chinese with English abstract)



[12]Gao M(高敏). Study on Competitive Heterosis of Cotton Hybrids. MS Thesis of Huazhong Agricultural University, 2007 (in Chinese with English abstract)



[13]Liu L-W(刘芦苇). Analysis of Genetic Effects and Heterosis for Main Economical Characters in Transgenic Insect Resistant Cotton (G. hirsutum L.). MS thesis of Zhejiang University, 2006 (in Chinese with English abstract)



[14]Li Y-Y(李悦有). Studies in the characteristics of fiber and heterosis in colored cotton. MS thesis of Zhejiang University, 2001 (in Chinese with English abstract)



[15]Lu B-X(卢碧霞). Studies on Heterosis and Genetic Effects in Combinations of Cotton Varieties with Different Ripening Stage. MS Thesis of Northwest Science and Technology University, 2001 (in Chinese with English abstract)



[16]Hu Y-J(胡延吉). Plant Breeding (植物育种学). Beijing: Higher Education Press, 2003



[17]Sun Y-L(孙亚莉), Du X-M(杜雄明). Genetic analysis of fuzzless in cotton germplasm. Hereditas (遗传), 2012, 34(8): 1073–1078 (in Chinese with English abstract)



[18]Zhou Z-L(周忠丽), Du X-M(杜雄明). Descriptors and Data Standard for Cotton (棉花种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2005



[19]Pan Z-E(潘兆娥), Sun J-L(孙君灵), Wang X-W(王希文), Jia Y-H(贾银华), Zhou Z-L(周忠丽), Pang B-Y(庞保印), Du X-M(杜雄明). Screening of SSR core primers with polymorphism on a cotton panel. Biodiversity Sci (生物多样性), 2008, 16(6): 555–561



[20]Du X M, Pan J J, Wang R H, Zhang T Z, Shi Y Z. Genetic analysis of presence and absence of lint and fuzz in cotton. Plant Breed, 2001, 120(6): 519–522



[21]Du X-M(杜雄明), Liu G-Q(刘国强). Analyses and evaluation of naked seed variety resources in upland cotton. J Henan Vocation-Tech Teachers coll (河南职技师院学报), 1994, 22(1): 10–14 (in Chinese with English abstract)



[22]Huang N-T(黄乃泰). Studies on the Performance and the Genetic Bases of Heterosis in a Hybrid Cotton Xiangzamian 2. MS Thesis of Nanjing Agricultural University, 2003 (in Chinese with English abstract)



[23]Pan J-J(潘家驹). Cotton Breeding (棉花育种学), Beijing: China Agriculture Press, 1998 (in Chinese)



[24]Xing C-Z(邢朝柱), Yu S-X(喻树迅), Guo L-P(郭立平), Miao C-D(苗成朵), Feng W-J(冯文娟), Wang H-L(王海林), Zhao Y-L(赵云雷). Heterosis performance and correlation analysis on economic traits of upland cotton under various ecological environments. Cott Sci (棉花学报), 2007, 19(1): 3–7 (in Chinese with English abstract)



[25]Tsaftaris A S, Kafka M. Mechanisms of heterosis in crop plants. J Crop Prod, 1998, 1: 95–111



[26]Wang R-H(汪若海). High Quality Cotton Production Technology (优质棉生产技术). Beijing: China Agriculture Science Technology Press, 1988



[27]Wu Y-T(武耀廷), Zhang T-Z(张天真), Zhu X-F(朱协飞), Wang G-M(王广明). Relationship between F1, F2 yield, heterosis and genetic distance measured by molecular markers and parent performance in cotton. Sci Agric Sin (中国农业科学), 2002, 35(1): 22–28 (in Chinese with English abstract)



[28]Xing C-Z(邢朝柱), Jing S-R(靖深蓉), Xing Y-H(邢以华). Review and prospect on cotton heterosis utilization and study in china. Cott Sci (棉花学报), 2007, 19(5): 337–345 (in Chinese with English abstract)

[1] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[2] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[3] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[4] 向丽媛,徐凯,苏静,吴超,袁雄,郑兴飞,刁英,胡中立,李兰芝. 基于通路分析剖析水稻农艺性状配合力和杂种优势[J]. 作物学报, 2019, 45(9): 1319-1326.
[5] 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1aGhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476.
[6] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[7] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[8] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[9] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
[10] 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126.
[11] 邹应斌,黄敏. 转型期作物生产发展的机遇与挑战[J]. 作物学报, 2018, 44(6): 791-795.
[12] 王琪月, 孟淑君, 张柯, 张战辉, 汤继华, 丁冬. 玉米雌穗发育杂种优势相关miRNA的研究[J]. 作物学报, 2018, 44(6): 796-813.
[13] 董婧,逯晓萍,张坤明,薛春雷,张瑞霞. 高丹草杂种及其亲本转录组SNP及等位基因特异性表达分析[J]. 作物学报, 2018, 44(12): 1809-1817.
[14] 朱国忠,张芳,付洁,李乐晨,牛二利,郭旺珍. 适于陆地棉品种身份鉴定的SNP核心位点筛选与评价[J]. 作物学报, 2018, 44(11): 1631-1639.
[15] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!