作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1303-1308.doi: 10.3724/SP.J.1006.2013.01303
李海波1,杨兰芳1,*,李亚东2
LI Hai-Bo1,YANG Lan-Fang1,*,LI Ya-Dong2
摘要:
[1]Tripathi R D, Srivastava S, Mishra S, Singh N, Tuli F, Gupta D K, Maathuis F J M. Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol, 2007, 25: 158–165[2]Mateos-Naranjo E, Andrades-Moreno L, Redondo-Gómez S. Tolerance to and accumulation of arsenic in the cordgrass Spartina densiflora Brongn. Bioresource Technol, 2012, 104: 187–194[3]Pillai A, Sunita G, Gupta V K. A new system for the spectrophotometric determination of arsenic in environmental and biological samples. Anal Chimica Acta, 2000, 408: 111–115[4]Mandal B K, Suzuki K T. Arsenic around the world: a review. Talanta, 2002, 58: 201–235[5]Brammer H, Ravenscroft P. Arsenic in groundwater: a threat to sustainable agriculture in South and Southeast Asia. Environ Internatl, 2009, 35: 647–654[6]Hu S-Y(胡省英), Ran W-Y(冉伟彦). Ecological effects of arsenic in soil environment. Geophys Geochem Explorat (物化与物探), 2006, 30(1): 83–91(in Chinese with English abstract)[7]Chang S-M(常思敏), Ma X-M(马新明), Jiang Y-Y(蒋媛媛), He D-X(贺德先), Zhang G-L(张贵龙). Research progress on arsenic contamination in soils and arsenic toxicity in crops. J Henan Agric Univ (河南农业大学学报), 2005, 39(2): 161–167 (in Chinese with English abstract)[8]Garg N, Singla P. Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett, 2011, 9: 303–321[9]Talano M A, Cejas R B, González P S, Agostini E. Arsenic effect on the crop symbiosis Bradythizobium-soybean. Plant Physiol Biochem, 2013, 63: 8–14[10]Zou Q(邹琦). Experimental Guidebook of Plant Physiology (植物生理实验指导书). Beijing: China Agriculture Press, 2000. pp 72–73 (in Chinese)[11]Lao J-C(劳家柽). Manual of Soil Agro-Chemical Analysis (土壤农化分析手册). Beijing: China Agriculture Press, 1988. pp 229–354 (in Chinese)[12]Cao H, Jiang Y, Chen J, Zhang H, Huang W, Li L, Zhang W. Arsenic accumulation in Scutellaria baicalensis Georgi and its effects on plant growth and pharmaceutical components. J Hazardous Materials, 2009, 171: 508–513[13]Shaibur M R, Kawai S. Effect of arsenic on visible symptom and arsenic concentration in hydroponic Japanese mustard spinach. Environ Exp Bot, 2009, 67: 65–70[14]Chen T-B(陈同斌), Liu G-L(刘更令). Effect of arsenic on rice (Oryza sativa L) growth and development and its mechanism. Sci Agric Sin (中国农业科学), 1993, 26(6): 50–58 (in Chinese with English abstract)[15]Liu Q-J(刘全吉), Zheng C-M(郑床木), Tan Q-L(谭启玲), Sun X-C(孙学成), Hu C-X(胡承孝). Effects of high arsenic pollution in soil on growth of winter wheat (Triticum aestivum L.) and rape (Brassica napus). Acta Agric Zhejiangensis (浙江农业学报), 2011, 23(5): 967–971(in Chinese with English abstract)[16]Aposhian H V, Zakharyan R A, Avram M D, Sampayo-Reyes A, Wollemberg M L. A view of the enzymology of arsenic metabolism and a mew potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicol Appl Pharmacol, 2004, 198: 327–335[17]Smith S E, Christophersen H M, Pope S, Smith F A. Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil, 2010, 327: 1–21[18]Päivöke A E, Simola L K. Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content, and phytase activity. Ecotoxicol Environ Safety, 2011, 49: 111–121[19]Liu Q-J(刘全吉), Sun X-C(孙学成), Hu C-X(胡承孝), Tan Q-L(谭启玲). Growth and photosynthesis characteristics of wheat (Triticum aestivum L.) under arsenic stress condition. Acta Ecol Sin (生态学报), 2009, 29(2): 854–859 (in Chinese with English abstract)[20]Rahman M A, Hasegawa H, Rahman M M, Ialam M N, Miah M A M, Tasmen A. Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L) varies in Bangladesh. Chemosphere, 2007, 67: 1072–1079[21]Miteva E, Hristova D, Nenova V, Maneva S. Arsenic as a factor affecting virus infection in tomato plants: changes in plant growth, peroxidase activity and chloroplase pigments. Sci Hort, 2005, 105: 343–358[22]Stoeva N, Berova M, Zlatev Z. Physiological response of maize to arsenic contamination. Biol Plant, 2003, 47: 449–452[23]Xu Z-S(徐竹生), Liu D-H(刘道宏). Study of the senescence of rice leaves. J Huazhong Agric Univ (华中农业大学学报), 1986, 5(1): 33–39 (in Chinese with English abstract)[24]Li J R, Yu K, Wei J R, Ma Q, Wang B Q, Yu D. Gibberellin retards chlorophyll degradation during senescence of Paris polyphylla. Biol Plant, 2010, 54: 395–399[25]Guan J-Y(关锦毅), Hao Z-B(郝再彬), Zhang D(张达), Wang X-L(王秀丽). A review on the extraction, detection and biological function of chlorophyll. J Northeast Agric Univ (东北农业大学学报), 2009, 40(12): 130–134 (in Chinese with English abstract) |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[4] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[5] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[6] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[7] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[8] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[9] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[10] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[11] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[12] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[13] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[14] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[15] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
|