欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1303-1308.doi: 10.3724/SP.J.1006.2013.01303

• 研究简报 • 上一篇    下一篇

土壤砷对大豆主要性状及叶绿素含量的影响

李海波1,杨兰芳1,*,李亚东2   

  1. 1湖北大学资源环境学院, 湖北武汉430062; 2 湖北大学生命科学学院, 湖北武汉430062
  • 收稿日期:2012-10-09 修回日期:2013-03-11 出版日期:2013-07-12 网络出版日期:2013-04-23
  • 通讯作者: 杨兰芳, E-mail: lfyang@hubu.edu.cn, Tel: 18971612858
  • 基金资助:

    本研究由湖北省教育厅科学技术研究计划重点项目(D20091009)资助。

Effects of Soil Arsenic on Soybean Main Traits and Chlorophyll Content at Different Growing Stage

LI Hai-Bo1,YANG Lan-Fang1,*,LI Ya-Dong2   

  1. 1 School of Resources and Environmental Science, Hubei University, Wuhan 430062, China; 2 School of Life Science, Hubei University, Wuhan 430062, China
  • Received:2012-10-09 Revised:2013-03-11 Published:2013-07-12 Published online:2013-04-23
  • Contact: 杨兰芳, E-mail: lfyang@hubu.edu.cn, Tel: 18971612858

摘要:

设置土壤加砷的大豆盆栽试验,测定大豆株高、结荚期与鼓粒期的叶绿素含量和大豆成熟收获后的生物量。结果表明,当土壤砷含量达50 mg kg–1时,大豆表现明显的中毒症状,植株矮化,叶色暗绿,叶片皱缩,成熟延迟。大豆株高随土壤加砷量增加而降低,高砷量也显著减少大豆生物量,加砷量达100 mg kg–1时,大豆株高、茎叶生物量、地上生物量、籽粒产量和总生物量分别下降45.0%36.6%44.6%56.1%43.4%。高砷量增加根系与地上、茎叶与地上生物量的比值,降低籽粒与地上、籽粒与茎叶、籽粒与总生物量的比值。土壤加砷量对大豆结荚期叶绿素含量无显著影响,但是高砷量显著降低大豆结荚期叶绿素a与叶绿素b的比值。土壤加砷量为50 mg kg–1100 mg kg–1时,大豆鼓粒期的叶绿素a、叶绿素b、叶绿素总量和类胡萝卜素分别增加120.4%96.1%112.2%91.5%117.8%94.5%104.4%83.7%,同时,结荚期与鼓粒期叶绿素含量的比值显著降低。由此可见,土壤中高砷含量对大豆植株有毒害作用,影响大豆生物量的分配,降低大豆地上生物量和籽粒产量,改变叶绿素的构成。相对增加生长后期叶绿素的含量可能是大豆成熟延迟的重要原因。

关键词: 土壤砷, 大豆, 株高, 生物量, 叶绿素

Abstract:

Arsenic is ubiquitous in environment and has high toxicity to animal and plant. Investigating the effects of arsenic on plant growth is important for the recognition of the toxic mechanism of arsenic to plant and the food safety. To understand the relationship between soil arsenic pollution and plant growth, we conducted a soil pot experiment using a soybean variety with adding different amounts of arsenic into soil, in which the soybean growth condition was observed and the plant height, chlorophyll content at podding and grain filling stages and the biomass after harvest were determined. The results showed that visible symptom of arsenic toxicity to soybean was dwarfing of plants, dark green and crimpled leaves, retarded maturity when soil arsenic addition was up to 50 mg kg–1. The soybean plant height decreased and the soybean biomass significantly reduced when high soil arsenic contents. The soybean plant height, soybean stem biomass, aerial part biomass, grain yield and the total soybean biomass decreased by 45.0%, 36.6%, 44.6%, 56.1%, and 43.4%, respectively, in the treatments of 100 mg kg–1 of arsenic. High soil arsenic amounts increased the biomass ratios of roots to aerial parts and stem grains to aerial parts, but decreased the ratios of grains to aerial parts, grains to stems and grains to total biomass. Soil arsenic amounts had no significant effects on chlorophyll content in soybean leaf but decreased the ratio of Chl a to Chl b at podding stage. At grain filling stage, 50 and 100 mg kg-1 arsenic treatments increased 120.4% and 96.1% of Chl a, 112.2% and 91.5% of Chl b, 117.8% and 94.5% of total chlorophyll and 104.4% and 83.7% of carotenoid content, respectively. High soil arsenic amounts reduced the ratio of chlorophyll content at podding stage to that at grain filling stage significantly. In conclusion, high soil arsenic amounts are toxic to soybean growth, affect the allocation of soybean biomass, and decrease the biomass of aerial parts and grains yield. The important reason of the retardation of soybean maturity is the constitutional alteration of chlorophyll in soybean leaf and the relative increment of chlorophyll content in soybean leaves during later growing stage by high soil arsenic amounts.

Key words: Soil arsenic, Soybean (Glycine max), Plant height, Biomass, Chlorophyll

[1]Tripathi R D, Srivastava S, Mishra S, Singh N, Tuli F, Gupta D K, Maathuis F J M. Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol, 2007, 25: 158–165



[2]Mateos-Naranjo E, Andrades-Moreno L, Redondo-Gómez S. Tolerance to and accumulation of arsenic in the cordgrass Spartina densiflora Brongn. Bioresource Technol, 2012, 104: 187–194



[3]Pillai A, Sunita G, Gupta V K. A new system for the spectrophotometric determination of arsenic in environmental and biological samples. Anal Chimica Acta, 2000, 408: 111–115



[4]Mandal B K, Suzuki K T. Arsenic around the world: a review. Talanta, 2002, 58: 201–235



[5]Brammer H, Ravenscroft P. Arsenic in groundwater: a threat to sustainable agriculture in South and Southeast Asia. Environ Internatl, 2009, 35: 647–654



[6]Hu S-Y(胡省英), Ran W-Y(冉伟彦). Ecological effects of arsenic in soil environment. Geophys Geochem Explorat (物化与物探), 2006, 30(1): 83–91(in Chinese with English abstract)



[7]Chang S-M(常思敏), Ma X-M(马新明), Jiang Y-Y(蒋媛媛), He D-X(贺德先), Zhang G-L(张贵龙). Research progress on arsenic contamination in soils and arsenic toxicity in crops. J Henan Agric Univ (河南农业大学学报), 2005, 39(2): 161–167 (in Chinese with English abstract)



[8]Garg N, Singla P. Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett, 2011, 9: 303–321



[9]Talano M A, Cejas R B, González P S, Agostini E. Arsenic effect on the crop symbiosis Bradythizobium-soybean. Plant Physiol Biochem, 2013, 63: 8–14



[10]Zou Q(邹琦). Experimental Guidebook of Plant Physiology (植物生理实验指导书). Beijing: China Agriculture Press, 2000. pp 72–73 (in Chinese)



[11]Lao J-C(劳家柽). Manual of Soil Agro-Chemical Analysis (土壤农化分析手册). Beijing: China Agriculture Press, 1988. pp 229–354 (in Chinese)



[12]Cao H, Jiang Y, Chen J, Zhang H, Huang W, Li L, Zhang W. Arsenic accumulation in Scutellaria baicalensis Georgi and its effects on plant growth and pharmaceutical components. J Hazardous Materials, 2009, 171: 508–513



[13]Shaibur M R, Kawai S. Effect of arsenic on visible symptom and arsenic concentration in hydroponic Japanese mustard spinach. Environ Exp Bot, 2009, 67: 65–70



[14]Chen T-B(陈同斌), Liu G-L(刘更令). Effect of arsenic on rice (Oryza sativa L) growth and development and its mechanism. Sci Agric Sin (中国农业科学), 1993, 26(6): 50–58 (in Chinese with English abstract)



[15]Liu Q-J(刘全吉), Zheng C-M(郑床木), Tan Q-L(谭启玲), Sun X-C(孙学成), Hu C-X(胡承孝). Effects of high arsenic pollution in soil on growth of winter wheat (Triticum aestivum L.) and rape (Brassica napus). Acta Agric Zhejiangensis (浙江农业学报), 2011, 23(5): 967–971(in Chinese with English abstract)



[16]Aposhian H V, Zakharyan R A, Avram M D, Sampayo-Reyes A, Wollemberg M L. A view of the enzymology of arsenic metabolism and a mew potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicol Appl Pharmacol, 2004, 198: 327–335



[17]Smith S E, Christophersen H M, Pope S, Smith F A. Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil, 2010, 327: 1–21



[18]Päivöke A E, Simola L K. Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content, and phytase activity. Ecotoxicol Environ Safety, 2011, 49: 111–121



[19]Liu Q-J(刘全吉), Sun X-C(孙学成), Hu C-X(胡承孝), Tan Q-L(谭启玲). Growth and photosynthesis characteristics of wheat (Triticum aestivum L.) under arsenic stress condition. Acta Ecol Sin (生态学报), 2009, 29(2): 854–859 (in Chinese with English abstract)



[20]Rahman M A, Hasegawa H, Rahman M M, Ialam M N, Miah M A M, Tasmen A. Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L) varies in Bangladesh. Chemosphere, 2007, 67: 1072–1079



[21]Miteva E, Hristova D, Nenova V, Maneva S. Arsenic as a factor affecting virus infection in tomato plants: changes in plant growth, peroxidase activity and chloroplase pigments. Sci Hort, 2005, 105: 343–358



[22]Stoeva N, Berova M, Zlatev Z. Physiological response of maize to arsenic contamination. Biol Plant, 2003, 47: 449–452



[23]Xu Z-S(徐竹生), Liu D-H(刘道宏). Study of the senescence of rice leaves. J Huazhong Agric Univ (华中农业大学学报), 1986, 5(1): 33–39 (in Chinese with English abstract)



[24]Li J R, Yu K, Wei J R, Ma Q, Wang B Q, Yu D. Gibberellin retards chlorophyll degradation during senescence of Paris polyphylla. Biol Plant, 2010, 54: 395–399



[25]Guan J-Y(关锦毅), Hao Z-B(郝再彬), Zhang D(张达), Wang X-L(王秀丽). A review on the extraction, detection and biological function of chlorophyll. J Northeast Agric Univ (东北农业大学学报), 2009, 40(12): 130–134 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[9] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[13] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[14] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[15] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!