欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (06): 1002-1010.doi: 10.3724/SP.J.1006.2014.01002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗S-腺苷甲硫氨酸合成酶基因(ScSAM)的克隆及表达

宋修鹏1,张保青2,黄杏2,杨丽涛1,2,*,李杨瑞1,2,*   

  1. 1 广西大学农学院 / 亚热带农业生物资源保护与利用国家重点实验室,广西南宁530004;2 广西农业科学院 / 中国农业科学院甘蔗研究中心 / 农业部广西甘蔗生物技术与遗传改良重点实验室 / 广西甘蔗遗传改良重点实验室,广西南宁530007
  • 收稿日期:2013-11-17 修回日期:2014-03-04 出版日期:2014-06-12 网络出版日期:2014-04-09
  • 通讯作者: 杨丽涛, E-mail: liyr@gxu.edu.cn, Tel: 0771-3236407; 李杨瑞, E-mail: liyr@gxaas.net, Tel: 0771-3247689
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2013AA102604),国家国际合作项目(2013DFA31600),广西科学研究与技术开发计划项目(桂科产1123008-1、桂科攻1222009-1B、桂科合1347004-2),广西八桂学者、特聘专家专项基金,广西自然科学基金项目(2011GXNSFF018002、2013NXNSFAA019073)和广西农业科学院团队项目(桂农科2011YT01)资助。

Cloning and Expression of Sugarcane S-Adenosylmethionine Synthetase Gene ScSAM

SONG Xiu-Peng1,ZHANG Bao-Qing2,HUANG Xing2,YANG Li-Tao1,2,*,LI Yang-Rui1,2,*   

  1. 1 Agricultural College / State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China; 2 Guangxi Academy of Agricultural Sciences / Sugarcane Research Center, Chinese Academy of Agricultural Sciences / Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
  • Received:2013-11-17 Revised:2014-03-04 Published:2014-06-12 Published online:2014-04-09
  • Contact: 杨丽涛, E-mail: liyr@gxu.edu.cn, Tel: 0771-3236407; 李杨瑞, E-mail: liyr@gxaas.net, Tel: 0771-3247689

摘要:

利用RT-PCR和RACE技术从甘蔗品种新台糖22号(ROC 22)中克隆获得SAM基因的cDNA序列,命名为ScSAM,GenBank登录号为KC172558。用生物信息学方法预测分析其序列,cDNA全长1466 bp,含有1个1191 bp的完整开放阅读框(ORF),编码396个氨基酸,与高粱和玉米等植物的SAM蛋白有很高的相似性。系统进化树分析显示,甘蔗ScSAM与高粱的SAM蛋白亲缘关系较近。Real-time PCR分析表明ScSAM为组成型表达,在根中的表达量最高,是叶中表达量的3.6倍。其在黑穗病菌胁迫和低温(4℃)、聚乙二醇(PEG)、NaCl非生物胁迫下均被诱导表达,但表达模式不同;在H2O2胁迫下其表达被抑制。推测其可能参与甘蔗抗黑穗病过程,且在甘蔗抗寒、抗旱、抗盐和抗氧化等胁迫过程中也起某种作用。

关键词: 甘蔗, S-腺苷甲硫氨酸合成酶, 克隆, 表达分析

Abstract:

The full-length sequencecDNA of ScSAM (GenBank accession number: KC172558) was cloned from sugarcane variety ROC 22 using RT-PCR combined with RACE techniques. This sequence consists of 1466 bp with an intact open reading frame of 1191 bp, encoding a polypeptide of 396 amino acids. Homology analysis showed that the deduced ScSAM protein was highly homologous to SAM proteins from different species. Phylogenetic analysis indicated that ScSAM was closely related to the SAM of sorghum. Real-time PCR results showed that the ScSAM gene constitutively expressed in plant, with different expression levels in root, stalk and leaf. The transcript of ScSAM in root was the highest among the three organs, which was 3.6 times higher than that in leaf. Furthermore, ScSAM transcription was induced by biotic (smut infection) and abiotic (low temperature, PEG and NaCl) stresses, but the expression patterns were different. Under oxidative stress (H2O2), the expression of ScSAM was inhibited. We suggested that ScSAM might participate in smut-resistant activities in sugarcane, and also play a role in sugarcane resistances to chill, drought, salt and oxidation stresses.

Key words: Sugarcane, S-Adenosylmethionine synthetase (SAM), Clone, Expression analysis

[1]李杨瑞, 杨丽涛. 20世纪90年代以来我国甘蔗产业和科技的新发展. 西南农业学报, 2009, 22: 1469–1476



Li Y R. Yang L T. New developments of sugarcane industry and technology in China since 1990s. Southwest China J Agric Sci, 2009, 22: 1469–1476 (in Chinese with English abstract)



[2]Kumar T, Uzma, Khan M R, Abbas Z, Ali G M. Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Mol Biotechnol, 2014, 56: 199–209



[3]Mato J, Alvarez L, Ortiz P, Pajares M A. S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Therapeutics, 1997, 73: 265–280



[4]Fontecave M, Atta M, Mulliez E. S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci, 2004, 29: 243–249



[5]Belbahri L, Chevalier L, Bensaddek L, Gillet F, Fliniaux M A, Boerjan W, Inzé D, Thomas D, Thomasset B. Different expression of an S-adenosylmethionine synthetase gene in transgenic tobacco callus modifies alkaloid biosynthesis. Biotechnol Bioeng, 2000, 69: 11–20



[6]Grundy F J, Henkin T M. Regulation of gene expression by effectors that bind to RNA. Curr Opin Microbiol, 2004, 7: 126–131



[7]Winkler W C, Nahvi A, Sudarsan N, Barrick J E, Breaker R R. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Mol Biol, 2003, 10: 701–707



[8]Kevbrin V V, Zengler K, Lysenko A M, Wiegel J. Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka. Extremophiles, 2005, 9: 391–398



[9]Foyer C H, Bloom A J, Queval G, Noctor G. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol, 2009, 60: 455–484



[10]Espartero J, Pintor-Toro J A, Pardo J M. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol, 1994, 25: 217–227



[11]Ma X L, Wang Z L, Qi Y C, Zhao Y X, Zhang H. Isolation of S-adenosylmethionine synthetase gene from Suaeda salsa and its differential expression under NaCl stress. Acta Bot Sin, 2003, 45: 1359–1365



[12]朱晶莹, 王寒玉, 张晏萌, 余爱丽. 玉米S-腺苷甲硫氨酸合成酶基因家族成员在盐胁迫条件下的差异表达. 核农学报, 2011, 25: 427–431



Zhu J Y, Wang H Y, Zhang Y M, Yu A L. Differential expression of maize S-adenosylmethionin synthetase gene family members during salt stress. J Nucl Agric Sci, 2011, 25: 427–431 (in Chinese with English abstract)



[13]Li X D, Xia B, Wang R, Xu S, Jiang Y M, Yu F B, Peng F. Molecular cloning and characterization of S-adenosylmethionine synthetase gene from Lycoris radiata. Mol Biol Rep, 2013, 40: 1255–1263



[14]樊金萍, 柏锡, 李勇, 纪巍, 王希, 才华, 朱延明. 野生大豆S-腺苷甲硫氨酸合成酶基因的克隆及功能分析. 作物学报, 2008, 34: 1581–1587



Fan J P, Bo X, Li Y, Ji W, Wang X, Cai H, Zhu Y M. Cloning and function analysis of gene SAMS from Glycine soja. Acta Agron Sin, 2008, 34: 1581–1587 (in Chinese with English abstract)



[15]Santiago R, de Armas R, Fontaniella B, Vicente C, Legaz M E. Changes in soluble and cell wall-bound hydroxycinnamic and hydroxybenzoic acids in sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. Eur J Plant Pathol, 2009, 124: 439–450



[16]宋修鹏, 黄杏, 莫凤连, 杨丽涛, 李杨瑞, 陈保善. 甘蔗苯丙氨酸解氨酶基因(PAL)的克隆和表达分析. 中国农业科学, 2013, 46: 2856–2868



Song X P, Hang X, Mo F L, Yang L T, Li Y R, Chen B S. Cloning and expression analysis of sugarcane phenylalanin ammonia-lyase (PAL) gene. Sci Agric Sin, 2013, 46: 2856–2868 (in Chinese with English abstract)



[17]Cantoni G. The nature of the active methyl donor formed enzymatically from L-methionine and adenosinetriphosphate. J Am Chem Soc, 1952, 74: 2942–2943



[18]柴兴苹, 张玉秀, 谭金娟, 冯珊珊, 柴团耀. Zn胁迫下小麦S-腺苷甲硫氨酸代谢途径关键基因表达模式分析. 植物生理学报, 2013, 49: 375–384



Chai X P, Zhang Y X, Tan J J, Feng S S, Chai T Y. Analysis of expression patterns of genes participated in S-adenosylmethionine (SAM) metabolic pathway in wheat under Zn stress. Plant Physiol J, 2013, 49: 375–384 (in Chinese with English abstract)



[19]Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stresS-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol, 2004, 45: 712–722



[20]陈坤明, 张承烈. 干旱期间春小麦叶片多胺含量与作物抗旱性的关系. 植物生理学报, 2000, 26: 381–386



Chen K M, Zhang C L. Polyamine contents in the spring wheat leaves and their relations to drought-resistance. Plant Physiol J, 2000, 26: 381–386 (in Chinese with English abstract)



[21]鞠妍, 侯和胜. SAM合成酶基因的研究进展与应用现状. 天津农业科学, 2012, 18: 27–29



Ju Y, Hou H S. Research and application status of SAM synthase gene. Tianjin Agric Sci, 2012, 18: 27–29 (in Chinese with English abstract)



[22]周向红, 王萍. 向日葵S-腺苷甲硫氨酸合成酶基因克隆与分析. 作物杂志, 2011, 6: 10–13



Zhou X H, Wang P. Molecular cloning and bioinformatic analysis of S-adenosylmethionine synthetase gene from Helianthus annuus. Crops, 2011, 6: 10–13 (in Chinese with English abstract)



[23]孔令芳, 张吉宇, 刘志鹏, 王彦荣. 无芒隐子草SAMS1基因的克隆及干旱胁迫下的表达分析. 草业学报, 2013, 22: 268–275



Kong L F, Zhang J Y, Liu Z P, Wang Y R. Cloning of a S-adenosyl methionine synthetase gene from Cleistogenes songorica and its expression under droght stress. Acta Pratac Sin, 2013, 22: 268–275 (in Chinese with English abstract)



[24]Jennings J C, Apel-Birkhold P C, Mock N M, Baker C J, Anderson J D, Bailey B A. Induction of defense responses in tobacco by the protein Nep1 from Fusarium oxysporum. Plant Sci, 2001, 161: 891–899



[25]Kodaki T, Tsuji S, Otani N, Yamamoto D, Rao K S, Watanabe S, Tsukatsune M, Makino K. Differential transcriptional regulation of two distinct S-adenosylmethionine synthetase genes (SAM1 and SAM2) of Saccharomyces cerevisiae. Nucl Acids Res, 2003, 3(suppl): 303–304



[26]Mathur M, Sharma N, Sachar R. Differential regulation of S-adenosylmethionine synthetase isozymes by gibberellic acid in dwarf pea epicotyls. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol, 1993, 1162: 283–290



[27]Hazarika P, Rajam M V. Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene. Physiol Mol Biol Plants, 2011, 17: 115–128



[28]Yue C W, Xiao J, Ling X, Zeng N. Effect of low temperature stress on sweet potato S-adenosyl methionine synthetase gene expression. Agric Sci Technol, 2008, 9: 11–14



[29]陈锐, 陈亮, 王士强, 胡银岗. 水分胁迫下小麦S-腺苷甲硫氨酸合成酶基因的半定量表达模式分析. 麦类作物学报, 2009, 29: 954–958



Chen R, Chen L, Wang S Q, Hu Y G. Expression analysis of wheat S-adenosylmethionine synthetase gene during water stress and re-watering by semi-quantitative RT-PCR. J Triticeae Crops, 2009, 29: 954–958 (in Chinese with English abstract)



[30]林凡云, 王士强, 胡银岗, 何蓓如. 糜子SAMS基因的克隆及其在干旱复水中的表达模式分析. 作物学报, 2008, 34: 777–782



Lin F Y, Wang S Q, Hu Y G, He B R. Cloning of a S-adenosylmethionine synthetase gene from broomcorn millet (Panicum miliaceum L.) and its expression during drought and re-watering. Acta Agron Sin, 2008, 34: 777–782 (in Chinese with English abstract)



[31]周凯, 宋丽艳, 叶武威, 王俊娟, 王德龙, 樊保香. 陆地棉耐盐相关基因GhSAMS的克隆及表达. 作物学报, 2011, 37: 1012–1019



Zhou K, Song L Y, Ye W W, Wang J J, Wang D L, Fan B X. Cloning and expression of GhSAMS gene related to salt-tolerance in Gossypium hirsutum L. Acta Agron Sin, 2011, 37: 1012–1019 (in Chinese with English abstract)



[32]李燕, 孙伟, 赵彦修, 张慧. 盐地碱蓬甲硫氨酸合成酶基因(SsMS)的克隆与表达分析. 山东师范大学学报(自然科学版), 2003, 18: 76–78



Li Y, Sun W, Zhao Y X, Zhang H. Isolation and characteizing of a methionine synthetase gene in Suaeda salsa under stress. J Shandong Norm Univ (Nat Sci), 2003, 18: 76–78 (in Chinese with English abstract)



[33]Sánchez-Aguayo I, Rodríguez-Galán J M, García R, Torreblanca J, Pardo J M. Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants. Planta, 2004, 220: 278–285

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[5] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[6] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[7] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[8] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[9] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[10] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[11] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[12] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[13] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[14] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[15] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!