欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (01): 141-148.doi: 10.3724/SP.J.1006.2016.00141

• 研究简报 • 上一篇    下一篇

一种新的符合度算法及其应用

张慧1 ,2,顾世梁1,*,李韬1   

  1. 1扬州大学农学院, 江苏扬州225009; 2桐庐县农业技术推广中心, 浙江杭州311500
  • 收稿日期:2015-02-05 修回日期:2015-09-06 出版日期:2016-01-12 网络出版日期:2015-10-13
  • 通讯作者: 顾世梁, E-mail: slgu@yzu.edu.cn, Tel: 0514-87979358
  • 基金资助:

    本研究由国家农业信息化工程技术研究中心开放课题“小麦育种材料评价研究”项目资助。

A New Algorithm for Conformity and Its Application

ZHANG Hui1,2,GU Shi-Liang1,*,LI Tao1   

  1. 1Agricultural College of Yangzhou University, Yangzhou 225009, China; 2Agricultural Extension Station of Tonglu County, Hangzhou 311500, China
  • Received:2015-02-05 Revised:2015-09-06 Published:2016-01-12 Published online:2015-10-13
  • Contact: 顾世梁, E-mail: slgu@yzu.edu.cn, Tel: 0514-87979358
  • Supported by:

    The study was supported by open project of the National Agricultural Information Engineering Center.

摘要:

在总结分析了几种常用综合评价方法的基础上, 提出了一种反映观察值与理论值之间相似性的新算法——符合度。该算法就评价信息个体(观察值)与标准值(期望值)的马氏距离, 再由马氏距离转化为评价对象与标准的接近程度, 即符合度(r)。首先进行指标数(p)、相似度(r)与马氏距离(d)的模拟试验, 再通过曲面拟合的方法找出它们之间的关系模型。通过大量抽样试验, 验证符合度的次数分布与原先设定的符合度的良好对应关系, 说明模型的可行性与可靠性。小麦RVA性状指标, 利用该算法分析扬麦系统若干品种之间的接近程度, 并评价多变数复杂效应回归分析模拟试验的结果。符合度算法不需要数据标准化处理, 直接利用原始数据, 减少了计算工作量, 降低了因数据标准化处理方法不同而引起的评价结果差异, 同时由于不需要赋权, 排除了主观性的影响, 保证了信息的完整性以及评价结果的可靠性。

关键词: 符合度, 综合评价, 计算机模拟, 马氏距离

Abstract:

This article proposed a new algorithm of conformity using original data to calculate similarities between the target object and the expected value based on the Mahalanobis distance, providing an objective and reasonable analysis. Firstly, simulation experiments were conducted to obtain Mahalanobis distance (d) related to number (p) of different variables (traits) and similarity (r). Then, a surface fitting method was used to establish the function relationship between conformity (r) and index number (p), as well as Mahalanobis distance (d). Monte Carlo experiment for frequency distribution of conformity verified its good performance of the relationship model. The simulation results fully validated the feasibility and reliability of the model. Conformity algorithm was applied to calculating the similarity of a panel of Yangmai wheat varieties released in recent years referring to RVA parameters. The assessment of simulated multivariate regression for complex effects was also conducted. This study showed that conformity algorithm using raw data directly instead of standardized data reduces the work load and decreases inconsistency in similarity assessment with different data processing methods. In addition, conformity algorithm does not need weight assignment to each trait, thus can eliminate potential subjective impacts on traits or data and guarantee integrity of information and reliability of evaluation results.

Key words: Conformity algorithm, Comprehensive evaluation, Computer simulation, Mahalanobis distance

[1]顾基发. 评价方法综述. 见: 许国志. 科学决策与系统工程——中国系统工程学会第六次年会论文集.北京: 中国科学技术出版社, 1990. pp 5–7



Gu J F. Evaluation method review. In: Xu G Z ed. Scientific Decision-Making and System Engineering. Proceedings of 6th Conference of the Systems Engineering Society of China. Beijing: China Science and Technology Press, 1990. pp 5–7 (in Chinese)



[2]Chen S J, Hwang C L, Hwang F P. Fuzzy Multiple Attribute Decision Making: Methods and Applications (Lecture Notes in Economics and Mathematical Systems), Springer-Verlag, 1992. pp 163–287



[3]Hwang C L, Masud A S M. Multiple Objective Decision Making—Methods and Applications. Berlin-Heidelberg-New York, Springer-Verlag, 1979. pp 2–325



[4]Yongxing P, Shangzhi Y. The multi-hierarchy integrated evaluation method of enterprise’s credit grade. In: Proceedings of ISAHP, 1999. pp 125–128



[5]Savoy J. Statistical inference in retrieval effectiveness evaluation. Inf Proc & Manag, 1997, 33: 495–512



[6]Yuan Z, Wang H, Liu L Z, Liang T. Researching the comprehensive use of fuzzy comprehensive evaluation and Markov chain//IT in Medicine & Education, 2009. ITIME’09. IEEE International Symposium on. IEEE, 2009. pp 476–479



[7]陈凯华, 张孝远. 模糊综合评价模型的改进及应用. 甘肃科学学报, 2006, 18(3): 111–115



Chen K H, Zhang X Y. Application of the improved fuzzy comprehensive appraisal model. J Gansu Sci, 2006, 18(3): 111–115 (in Chinese with English abstract)



[8]程鹤, 耿双军. 模糊综合评价的改进模型. 统计与决策, 2007, (13): 136–137



Cheng H, Geng S J. The improved model of fuzzy comprehensive evaluation . Stat & Decision, 2007, (13): 136–137(in Chinese)



[9]田钦谟. 模糊综合评价中的若干问题. 模糊系统与数学, 1996, 10(2): 62–69



Tian Q M. Several problems in fuzzy comprehensive evaluation. Fuzzy Systand Math, 1996, 10(2): 62–69 (in Chinese with English abstract)



[10]王宗军. 综合评价的方法、问题及其研究趋势. 管理科学学报, 1998, 1(1): 73–79



Wang Z J. On the methods, problems and research trends of comprehensive evaluation. J Manag Sci China, 1998, 1(1): 73–79 (in Chinese with English abstract)



[11]杜栋, 庞庆华. 现代综合评价方法与案例精选. 清华大学出版社有限公司, 2005



Du D, Pang Q H. Modern Comprehensive Evaluation Method and Case Selection. Beijing: Tsinghua University Press Co., LTD, 2005. (in Chinese)



[12]马立平. 现代统计分析方法的学与用(三): 统计数据标准化——无量纲化方法. 北京统计, 2000, (3): 34–35



Ma L P. Learning and using in analysis methods of modern statistical: (3) Statistical data standardization, dimensionless method. J Beijing Stat, 2000, (3): 34-35 (in Chinese)



[13]叶宗裕. 关于多指标综合评价中指标正向化和无量纲化方法的选择. 浙江统计, 2003, (4): 24–25



Ye Z Y. The choice of multi-index comprehensive evaluation index in positive and dimensionless. J Zhejiang Stat, 2003, (4): 24–25(in Chinese)



[14]易平涛, 张丹宁, 郭亚军, 高立群. 动态综合评价中的无量纲化方法. 东北大学学报(自然科学版), 2009, 30: 889–892



Yi P T, Zhang D N, Guo Y J, Gao L Q. Study on dimensionless methods in dynamic comprehensive evaluation. J Northeastern Univ (Nat Sci), 2009, 30: 889–892 (in Chinese with English abstract)



[15]张卫华, 赵铭军. 指标无量纲化方法对综合评价结果可靠性的影响及其实证分析. 统计与信息论坛, 2005, 20(3): 33–36



Zhang W H, Zhao M J. The influence of undimensionalization on the reliability of comprehensive evaluation results and an empirical analysis. Stat & Inf Forum, 2005, 20(3): 33–36 (in Chinese with English abstract)



[16]孙威武. 评价因素权重向量的确定方法. 统计与决策, 2002 (7): 17–18



Sun W W. The method to determine the weights of evaluation factors vector. Stat & Decision, 2002, (7): 17–18 (in Chinese)



[17]王雪标, 龚兆仁, 郑晓薇. 线性综合评价函数的充要条件及权系数的确定. 系统工程理论与实践, 2000, 20(10): 58–62



Wang X B, Gong Z R, Zheng X W. Linear synthetical evaluation function and the determination of its weighting coefficients. Syst Eng-Theory & Practice, 2000, 20(10): 58–62 (in Chinese with English abstract)



[18]Grabowski M, Wallace W A. An expert system for maritime pilots: Its design and assessment using gaming. Manag Sci, 1993, 39: 1506–1520



[19]Guo Y J, Yao Y, Yi P T. Method and application of dynamic comprehensive evaluation. Syst Eng-Theory & Practice, 2007, 27(10): 154–158 (in Chinese with English abstract)



[20]王大将, 周庆敏, 常志玲, 孙洁. 一种新的多指标综合评价方法. 统计与决策, 2007, (7): 137–138



Wang D J, Zhou Q M, Chang Z L, Sun J. A new method of multi-index comprehensive evaluation. Stat & Decision, 2007, (7): 137–138 (in Chinese)



[21]顾世梁, 万林生, 黄丽娟, 王文平. 曲线和曲面拟合的改进缩张算法. 作物学报, 2007, 33: 583–589



Gu S L, Wan L S, Huang L J, Wang W P. Improved contraction-expansion algorithm for curve and surface fitting. Acta Agron Sin, 2007, 33: 583–589 (in Chinese with English abstract)



[22]顾世梁, 惠大丰, 莫惠栋. 非线性方程最优拟合的缩张算法. 作物学报, 1998, 24: 513–519



Gu S L, Hui D F, Mo H D. The optimal fitting of nonlinear equation with contraction-expansion algorithm. Acta Agron Sin, 1998, 24: 513–519 (in Chinese with English abstract)

[1] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[2] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[3] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[4] 郜欢欢,叶桑,王倩,王刘艳,王瑞莉,陈柳依,唐章林,李加纳,周清元,崔翠. 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选[J]. 作物学报, 2019, 45(9): 1416-1430.
[5] 纪龙,申红芳,徐春春,陈中督,方福平. 基于非线性主成分分析的绿色超级稻品种综合评价[J]. 作物学报, 2019, 45(7): 982-992.
[6] 崔翠,程闯,赵愉风,郜欢欢,王瑞莉,王刘艳,周清元. 52份豌豆种质萌发期耐铝毒性的综合评价与筛选[J]. 作物学报, 2019, 45(5): 798-805.
[7] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
[8] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
[9] 李鹏程,毕真真,梁文君,孙超,张俊莲,白江平. DNA甲基化参与调控马铃薯干旱胁迫响应[J]. 作物学报, 2019, 45(10): 1595-1603.
[10] 王倩,崔翠,叶桑,崔明圣,赵愉风,林呐,唐章林,李加纳,周清元. 甘蓝型油菜种子萌发期耐苯磺隆种质筛选与综合评价[J]. 作物学报, 2018, 44(8): 1169-1184.
[11] 段文学,张海燕,解备涛,汪宝卿,张立明. 甘薯苗期耐盐性鉴定及其指标筛选[J]. 作物学报, 2018, 44(8): 1237-1247.
[12] 李龙,毛新国,王景一,昌小平,柳玉平,景蕊莲. 小麦种质资源抗旱性鉴定评价[J]. 作物学报, 2018, 44(7): 988-999.
[13] 余斌,杨宏羽,王丽,刘玉汇,白江平,王蒂,张俊莲. 引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价[J]. 作物学报, 2018, 44(01): 63-74.
[14] 汪灿,周棱波,张国兵,张立异,徐燕,高旭,姜讷,邵明波. 薏苡种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2017, 43(09): 1381-1394.
[15] 张楚,张永清,路之娟,刘丽琴. 苗期耐低氮基因型苦荞的筛选及其评价指标[J]. 作物学报, 2017, 43(08): 1205-1215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!