欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (03): 324-331.doi: 10.3724/SP.J.1006.2017.00324

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

CP4-EPSPs基因大豆杂交后代对草甘膦的抗性水平与遗传背景的相关性

孙如建1,2,3,孙宾成1,张琪1,胡兴国1,郭荣起1,郭兵福2,马岩松2,4,于平1,张晓莉1,柴燊1,张万海1,*,邱丽娟2,*   

  1. 1呼伦贝尔市农业科学研究所 / 国家大豆改良中心呼伦贝尔分中心,内蒙古扎兰屯 162650;2中国农业科学院作物科学研究所 / 国家农作物基因资源与遗传改良重大科学工程 / 农业部北京大豆生物学重点实验室,北京100081;3东北农业大学,黑龙江哈尔滨150030;4黑龙江省农业科学院大豆研究所,黑龙江哈尔滨 150086
  • 收稿日期:2016-06-18 修回日期:2016-11-03 出版日期:2017-03-12 网络出版日期:2016-11-15
  • 通讯作者: 邱丽娟, E-mail: qiulijuan@caas.cn; 张万海, E-mail: zwh00001@sina.com
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(ZX2008004-001, ZX2011004-001, ZX2013004-001, ZX2014004-001)资助。

Correlation between Resistance to Glyphosate and Genetic Background in Transgenic CP4-EPSPs Gene Soybean Progeny

SUN Ru-Jian,SUN Bin-Cheng,ZHANG Qi,HU Xing-Guo,GUO Rong-Qi,GUO Bing-Fu,MA Yan-Song,YU Ping,ZHANG Xiao-Li,CHAI Shen,ZHANG Wan-Hai,QIU Li-Juan   

  1. 1 Hulun Buir Institution of Agricultural Sciences,Zhalantun 162650,Inner Mongolia;2 The National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Soybean Biology (Beijing) / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Northeast Agricultural University, Harbin 150030, China; 4 Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
  • Received:2016-06-18 Revised:2016-11-03 Published:2017-03-12 Published online:2016-11-15
  • Contact: 邱丽娟, E-mail: qiulijuan@caas.cn; 张万海, E-mail: zwh00001@sina.com
  • Supported by:

    This study was supported by the Major Project of China on New Varieties of GMO Cultivation (ZX2008004-001, ZX2011004-001, ZX2013004-001, ZX2014004-001).

摘要:

第一代抗草甘膦转CP4-EPSPs基因大豆GTS40-3-2是国际上应用时间最长、种植面积最大的转基因作物。本文以6份GTS40-3-2衍生的抗草甘膦转基因大豆新品系为亲本,配制4个杂交组合,利用抗性分级法和相对株高法鉴定杂交亲本及其F2:3子代对草甘膦的耐受性差异,分析其抗性水平与遗传背景的相关性。结果表明,以1230 g a.i. hm–2草甘膦喷施处理时,转基因亲本及其F2:3子代的苗期生长受草甘膦抑制不显著,而当喷施浓度提高至3690 g a.i. hm–2和4920 g a.i. hm–2则抑制作用显著。供试的6个杂交亲本中以ZLHJ06-1568、ZLHJ10-713和ZLHJ06-698对草甘膦的耐受性相对较强,而4个F2:3组合中以ZLHJ10-713×ZLHJ06-698后代在草甘膦喷施后株高受抑制最小,对草甘膦耐受性最强。不同组合后代对草甘膦的耐受性普遍优于其双亲,呈现出杂种优势。各组合后代与亲本之间对草甘膦的耐受性均呈正相关,但由于亲本间互作效应的不同,导致后代抗性水平产生差异。本研究表明草甘膦抗性基因CP4-EPSPs在大豆中的表达水平与其遗传背景相关联,为利用转基因大豆新种质培育转基因大豆新品种过程中目标基因的定向选择提供了参考依据。

关键词: 转基因大豆, 抗草甘膦特性, 遗传规律

Abstract:

The first Roundup Ready (RR) soybean (GTS40-3-2) carrying CP4-EPSPs is one of the transgenic crops that have the longest application time and largest planting acreage worldwide. However, it has not been commercialized and has less report in China. In this study, six RR soybean lines derived from GTS40-3-2 were hybridized to create four combinations. We used resistance grading and relative plant height in identifying the resistance to glyphosate of parents and F2:3 progeny, to investigate the correlation between resistance of the progeny and genetic background. The growth inhibition of transgenic parents and progeny at seeding stage was not significant when the glyphosate treatment concentration was 1230 g a.i. hm–2, while it was significant when the glyphosate concentration was 3690 g a.i. hm–2 and 4920 g a.i. hm–2. ZLHJ06-1568, ZLHJ10-713, and ZLHJ06-698 among the six parents had the more glyphosate resistance relatively. The progeny of ZLHJ10-713×ZLHJ06-698 combination had the least inhibition of plant height showing highest resistance to glyphosate in all four F2:3 combinations. The progeny had better resistance to glyphosate than their parents showing better heterosis. The glyphosate resistance of progeny was positively correlated with that of parents. Difference of glyphosate resistance was found in progeny among different combinations because of the interaction between parents. Our study indicates that the expression of glyphosate resistance gene is closely related to the genetic background in soybean, providing a theoretical evidence for target gene selection in developing new varieties by using transgenic germplasm.

Key words: Transgenic soybean, Glyphosate-resistant characteristics, Inheritance

[1]Retrieved June 4, 2014, http://www.chinairn.com/news/20140604/084920804.shtml
[2]Phillip A C. RAPD analysis of seed purity in a commercial hybrid cabbage (Brassica oleracea var. Capital) cultivar. Genome, 2000, 43: 317
[3]Hungria M, Mendes I C, Nakatani A S, Reis-Junior F B, Morais J Z, Oliveira M C N, Fernandes M F. Effects of the glyphosate-resistance gene and herbicides on soybean: Field trials monitoring biological nitrogen fixation and yield. Field Crops Res, 2014, 158: 43–54
[4]Norsworthy J K. Use of soybean production surveys to determine weed management needs of south carolina farmers. Weed Technol, 2003, 17: 195–201
[5]James C. Global biotechnology GM crops commercialization development trend in 2014. Chinese Journal of biological engineering, 2015, 35: 1–14
[6]Dun B Q, Wang X J, Lu W, Chen M, Zhang W, Ping S Z, Wang Z X, Zhang B M, Lin M. Development of highly glyphosate-tolerant tobacco by coexpression for glyphosate acetyltransferase gat and EPSPS G2-aroA genes. Crop J, 2014, 2: 164–169
[7]Moldes C A, Medici L O, Abrahao O S, Tsai S M, Azevedo R A. Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate. Acta Physiol Plant, 2008, 30: 469–479
[8]王秀丽, 王留明, 王家宝, 杨静, 陈莹, 赵军胜, 高明伟. 转基因抗草甘膦棉花鉴定方法研究. 山东农业科学, 2008, (9): 79–80
Wang X L, Wang L M, Wang J B, Yang J, Chen Y, Zhao J S, Gao M W. Study on identification method of transgenic glyphosate resistant cotton. Shandong Agric Sci, 2008, (9): 79–80 (in Chinese)
[9]张庆贺, 王斌, 蒋凌雪, 邱丽娟, 陶波. 抗草甘膦转基因大豆生物测定方法的研究. 作物杂志, 2010, (3): 20–22
Zhang Q H, Wang B, Jiang L X, Qiu L J, Tao B. The research of biological and biochemical method to detect the roundup ready soybean. Crops, 2010, (3): 20–22 (in Chinese)
[10]吕山花, 常汝镇, 陶波, 李向华, 栾凤侠, 郭珊花, 邱丽娟. 抗草甘膦转基因大豆PCR检测方法的建立与应用. 中国农业科学, 2003, 36: 883–887
Lü S H, Chang R Z, Tao B, Li X H, Luan F X, Guo S H, Qiu L J. Methodological research on pcr based detection of genetically modified soybean resistant to glyphosate. Sci Agric Sin, 2003, 36: 883–887 (in Chinese with English abstract)
[11]邱丽娟, 刘明, 郭勇, 李脉泉, 张宪丽. 一种测定大豆对草甘膦耐性的方法及应用: 中国, 104280536A[P]. 2015-01-14
Qiu L J, Liu M, Guo Y, Li M Q, Zhang X L. Method for Determining Tolerance of Soybean to Glyphosate and Its Application: China, 104280536A[P]. 2015-01-14 (in Chinese)
[12]Mueller T C, Massey J H, Hayes R M, Main C L, Stewart C N. Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed . J Agric Food Chem, 2003, 51: 680–684
[13]Zobiole L H S, Kremer R J, de Oliveira Jr R S, Constantin J. Glyphosate affects photosynthesis in first and second generation of glyphosate-resistant soybeans. Plant Soil, 2010, 336: 251–265
[14]Zobiole L H S, Kremer R J, Oliveira R S, Constantin J. Glyphosate effects on photosynthesis, nutrient accumulation, and nodulation in glyphosate-resistant soybean. J Plant Nutr Soil Sci, 2012, 175: 319–330
[15]刘文娟, 刘勇, 黄小琴, 周西全, 宋君, 尹全, 王东, 陶李, 张富丽, 常丽娟, 张蕾, 雷绍荣. 不同时期喷施草甘膦对抗草甘膦转基因大豆生长和产量构成的影响. 中国农业科学, 2012, 45: 675–684
Liu W J, Liu Y, Huang X Q, Zhou X Q, Song J, Yin Q, Wang D, Tao L, Zhang F L, Chang L J, Zhang L, Lei S R. Impact of spraying glyphosate on growth and yield component of glyphosate-tolerant soybean at different growth stages. Sci Agric Sin, 2012, 45: 675–684 (in Chinese with English abstract)
[16]刘文娟, 刘勇, 宋君, 郭灵安, 常丽娟, 张富丽, 王东, 尹全, 赵泓洋, 雷绍荣. 喷施草甘膦对转基因大豆产量构成和抗性遗传的影响. 中国油料作物学报, 2013, 35: 697–703
Liu W J, Liu Y, Song J, Guo L A, Chang L J, Zhang F L, Wang D, Yin Q, Zhao H Y, Lei S R. Impact of spraying glyphosate on yield component and resistance genetics of glyphosate-tolerant soybean at two-trifoliolate leaf stage. Chin J Oil Crop Sci, 2013, 35: 697–703 (in Chinese with English abstract)
[17]刘敏, 朱洪德, 高中利. 抗除草剂转基因大豆遗传分析. 大豆科学, 2010, 29(1): 33–36
Liu M, Zhu H D, Gao Z L. Inheritance analysis of herbicide-resistant transgenic soybean. Soybean Sci, 2010, 29(1): 33–36 (in Chinese with English abstract)
[18]杨鑫浩. 大豆对草甘膦耐受性检测方法研究. 中国农业科学院硕士学位论文, 北京, 2014
Yang X H, Detecting Methods of Soybean Tolerance to Glyphosate. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014. (in Chinese)
[19]李儒海, 武怀恒, 褚世海, 万鹏, 黄民松, 吴金萍. 转基因抗草甘膦棉花与常规棉花对草甘膦耐受性的比较研究.中国棉花, 2010, 37(12): 9–11
Li R H, Wu H H, Chu S H, Wan P, Huang M S, Wu J P. A comparative study of transgenic glyphosate-resistant cotton and conventional cotton glyphosate tolerance. China Cotton, 2010, 37(12): 9–11 (in Chinese)
[20]江荣昌, 姚秉琦. 化学除草技术手册. 上海: 上海科学技术出版社, 1989
Jiang R C, Yao B Q. Chemical weed Technical Manual. Shanghai: Shanghai Scientific and Technical Publishers, 1989 (in Chinese)
[21]Jiang L X, Jin L G, Guo Y, Tao B, Qiu L J. Glyphosate effects on the gene expression of the apical bud in soybean (Glycine max). Biochem Biophys Res Commun, 2013, 437: 544–549
[22]刘文娟, 刘勇, 宋君, 周西全, 张富丽, 尹全, 王东, 陶李. 外施草甘膦对转基因大豆生长的影响研究. 见: 粮食安全与植保科技创新.中国植物保护学会2009年学术年会论文集, 2009. p 1104
Liu W J, Liu Y, Song J, Zhou X Q, Zhang F L, Yin Q, Wang D, Tao L. Effect of glyphosate on the growth of transgenic soybean. In: Food Safety and Plant Protection Science and Technology Innovation. Annual conference of China Society of Plant Protection, 2009. p 1104 (in Chinese)

[1] 张小芳,董秋平,乔潇,乔亚科,王冰冰,张锴,李桂兰. 基于Cre/loxP系统的无筛选标记转耐低磷转录因子GmPTF1大豆种质创制与分析[J]. 作物学报, 2019, 45(5): 683-692.
[2] 王晓波,蒋凌雪,魏利,刘林,陆伟,李文欣,王俊,陶波,常汝镇,邱丽娟. 外源抗草膦EPSPs基因在大豆基因组中的整合与定位[J]. 作物学报, 2010, 36(3): 365-375.
[3] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733-1737.
[4] 郭玉双;张艳菊;朱延明;李杰;柏锡;张淑珍;吴书音;李海燕. 转几丁质酶和核糖体失活蛋白双价基因大豆的获得与抗病性鉴定[J]. 作物学报, 2006, 32(12): 1841-1847.
[5] 钱虎君;盖钧镒;喻德跃. 大豆豆乳产量、品质及加工性状的遗传变异和遗传规律研究[J]. 作物学报, 2001, 27(06): 880-885.
[6] 傅骏骅;李连城;苑红丽;岳绍先;朱立煌. 抗阿特拉津(Atrazine)转基因大豆植株的田间检测表现[J]. 作物学报, 1993, 19(06): 497-500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!