欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2443-2450.doi: 10.3724/SP.J.1006.2022.14188

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用中国抗源区分强致病力大豆胞囊线虫群体的探讨

练云(), 魏荷, 王金社, 张辉, 雷晨芳, 李金英, 卢为国()   

  1. 河南省作物分子育种研究院 / 国家大豆改良中心郑州分中心 / 农业农村部黄淮海油料作物重点实验室 / 河南省油料作物遗传改良重点实验室, 河南郑州 450002
  • 收稿日期:2021-10-17 接受日期:2022-01-05 出版日期:2022-10-12 网络出版日期:2022-07-20
  • 通讯作者: 卢为国
  • 作者简介:第一作者联系方式: E-mail: lianyun262@126.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0101400)

Identification highly virulent population of soybean cyst nematode using China germplasms

LIAN Yun(), WEI He, WANG Jin-She, ZHANG Hui, LEI Chen-Fang, LI Jin-Ying, LU Wei-Guo()   

  1. Henan Academy of Crop Molecular Breeding / Zhengzhou Subcenter of National Soybean Improvement Center / Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, Henan, China
  • Received:2021-10-17 Accepted:2022-01-05 Published:2022-10-12 Published online:2022-07-20
  • Contact: LU Wei-Guo
  • Supported by:
    National Key Research and Development Program of China(2017YFD0101400)

摘要:

由大豆胞囊线虫(Soybean cyst nematode, Heterodera glycines, SCN)引起的病害是一种世界性大豆病害。随着强致病力大豆胞囊线虫群体X12的出现及LY1线虫群体的合成, 国际通用的Riggs和HG type 2种大豆胞囊线虫生理小种鉴别模式已不能将4号生理小种、X12线虫群体、LY1线虫群体有效区分, 本研究提供了一种区分这3个线虫群体的简易鉴定方法, 为SCN相关研究提供技术支撑。包括以下步骤: 利用感病品种在病土中繁殖备用接种的胞囊; 用兴县灰皮支(ZDD2315)和PI567516C作为鉴别寄主, Lee为感病对照, 接种鉴定; 若兴县灰皮支和PI567516C均表现感病, 表明该病土感染的是X12线虫群体; 若兴县灰皮支表现抗病而PI567516C表现感病, 表明该病土感染的是4号生理小种; 若PI567516C表现抗病, 表明该病土感染的是LY1线虫群体。以上结果表明, 利用我国优异抗源兴县灰皮支和PI567516C 作为鉴别寄主, 能有效区分目前报道的具有强致病力的大豆胞囊线虫4号生理小种、X12和LY1线虫群体。本研究结果对筛选抗源、调查大豆胞囊线虫生理小种分布、线虫致病基因研究有重要意义。

关键词: 大豆胞囊线虫, 生理小种, 强致病力, 抗源

Abstract:

The disease caused by soybean cyst nematode (soybean cyst nematode, Heterodera glycines, SCN) is a worldwide soybean disease. The internationally used race identification models including Riggs model and Hg type for differentiate soybean cyst nematode population could not effectively distinguish the highly virulent race such as race 4, X12 population, and synthesized nematode population LY1. This study provides a simple identification method for distinguishing the three highly virulent population of the soybean cyst nematode, which would be greatly contribute to SCN research. This method included the following steps: First, we used the susceptible varieties and raised enough cysts in the soil infected highly virulent population of SCN for inoculation. Then, soybean varieties Xingxianhuipizhi (ZDD2315) and PI567516C were selected as differential hosts, and Lee was used as susceptible control for inoculation. Both ZDD2315 and PI567516C was sensitive in the inoculating reaction, indicating that the soil was infected by X12 population. If ZDD2315 was resistance while PI567516C were susceptible to the disease, indicating the soil was infected by race 4. If PI567516C was resistance to disease, it revealed that the soil was infected by LY1 population. These results indicated that the three highly virulent population including race 4, X12 population, and synthesized LY1 population could be effectively distinguished depending on the reaction of SCN on germplasms of ZDD2315 and PI567516C from China. In conclusion, these results of this study are of great significance for screening resistance germplasms, investigating the race distribution of SCN, and studying the pathogenic genes of SCN.

Key words: soybean cyst nematode, race, highly virulent, germplasms

表1

X12线虫群体和4号生理小种接种Riggs模式鉴别寄主"

寄主
Differential host
接种X12线虫群体 Inoculating X12 population 接种4号生理小种 Inoculating race 4 接种LY1线虫群体* Inoculating LY1 population*
每株上的平均胞囊数目**
Average cysts number per plant**
胞囊指数
FI
抗性反应
Reaction
每株上的平均胞囊数目**
Average cysts number per plant**
胞囊指数
FI
抗性反应
Reaction
每株上的平均胞囊数目
Average cysts number per plant
胞囊指数
FI
抗性反应
Reaction
Lee 185.4±26.9 (144-214) 330.6±62.8 (237-401) 100
Pickett 181.6±87.7 (52-264) 98 + 310.6±64.0 (251-413) 94 + /
Peking 95.2±91.5 (25-206) 51.3 + 292.0±21.3 (270-318) 88.3 + / 83 +
PI88788 177.6±94.1 (103-339) 95.8 + 290.0±93.8 (143-384) 87.7 + / 45 +
PI90763 93.0±47.9 (26-133) 50.2 + 99.6±21.0 (78-127) 30.1 + / 92 +

表2

X12线虫群体和4号生理小种接种HG type模式鉴别寄主"

寄主
Differential host
接种X12线虫群体Inoculating X12 population 接种4号生理小种 Inoculating race 4 接种LY1线虫群体* Inoculating LY1 population*
每株上的平均胞囊数目**
Average cysts number per plant**
胞囊指数
FI
抗性反应
Reaction
每株上的平均胞囊数目**
Average number of cysts per plant**
胞囊指数
FI
抗性反应 Reaction 每株上的平均胞囊数目
Average cysts number per plant
胞囊指数
FI
抗性反应
Reaction
Lee 185.4±26.9 (144-214) / 330.6±62.8 (237-401) / 100
Peking 95.2±91.5 (25-206) 51.3 + 292.0±21.3 (270-318) 88.3 + / 83 +
PI88788 177.6±94.1 (103-339) 95.8 + 290.0±93.8 (143-384) 87.7 + / 45 +
PI90763 93.0±47.9 (26-133) 50.2 + 99.6±21.0 (78-127) 30.1 + / 92 +
PI437654 51.2±23.1 (11-66) 27.6 + 23.6±6.4 (17-34) 7.1 - / 260 +
PI89772 179.5±51.5 (122-239) 96.8 + 54.0±5.7 (50-58) 16.3 + / 172 +
PI209332 235.0±46.7 (181-282) 126.8 + 421.2±86.8 (344-532) 127.4 + / 55 +
PI548316 224.8±49.2 (156-270) 121.2 + 251.8±98.6 (141-394) 76.2 + / 130 +

表3

利用ZDD2315和PI567516C区分强致病力大豆胞囊线虫群体的鉴定"

寄主
Differential
接种X12线虫群体Inoculating X12 population 接种4号生理小种 Inoculating race 4 接种LY1线虫群体* Inoculating LY1 population*
每株上的平均胞囊数目**
Average cysts number per plant**
胞囊指数
FI
抗性反应
Reaction
每株上的平均胞囊数目**
Average cysts number per plant**
胞囊指数
FI
抗性反应
Reaction
每株上的平均胞囊数目**
Average cysts number per plant**
胞囊指数
FI
抗性反应
Reaction
Lee 185.4±26.9 (144-214) / 330.6±62.8 (237-401) / 100
ZDD2315 145.4±87.7 (52-264) 87.7 + 14.0±2.8 (12-16) 4.2 - /
PI567516C 225±51.5 (122-239) 121.4 + 80.2±32.8 (53-135) 24.2 + 7 -

表4

利用ZDD2315和PI567516C验证多个土样来源的4号、2号生理小种和X12线虫群体"

生理小种
Race
生理小种鉴定Race testing 抗性反应Reaction 土样编号
Soil code
土样来源 Origin of the soil 土样采集时间
Soil sample collecting time (month/day)
土样采集地点
Soil sample collecting location
Lee* PI567516C ZDD2315 经度
Longitude (°)
纬度
Latitude (°)
X12 185.4±26.9 (144-214) + + SX12 112.166 37.844 2012/7 山西省邢家社乡想儿岭村
Xiangerling village, Xingjiashe township, Shanxi province
X12 118.4±28.7 (62-158) + + GJ30 112.257 38.014 2019/8 山西省河口镇段家岭村
Duanjialing village, Hekou town, Shanxi province
X12 135±38.7 (85-176) + + GJ07 112.166 37.844 2019/8 山西省邢家社乡想儿岭村
Xiangerling village, Xingjiashe township, Shanxi province
X12 222.9±36.2 (159-265) + + SX12单胞囊繁殖
SX12 Raised from single cyst
112.166 37.844 2016/1 河南省农业科学院培育
Cultivated from Henan Academy of Agricultural Sciences
Race 4 122.4±23.2 (97-154) + - GJ05 112.190 37.758 2019/8 山西省邢家社乡郭家社村
Guojiashe village, Xingjiashe township, Shanxi province
Race 4 156.3±33.1 (118-192) + - GJ21 111.967 37.846 2019/8 山西省马兰镇南龙沟村
Nanlonggou village, Malan town, Shanxi province
Race 4 189±42.5 (129-229) + - GJ27 112.218 37.998 2019/8 山西省河口镇大坡村
Dapo village, Hekou town, Shanxi province
Race 4 110.4±21 (78-143) + - GJ14 112.070 37.876 2019/8 山西省马兰镇姬家庄村
Jijiazhuang village, Malan town, Shanxi province
Race 4 134±62.2 (45-260) + - GJ28 112.232 38.017 2019/8 山西省河口镇水头村
Shuitou village, Hekou town, Shanxi province
Race 4 124.6±26.1 (87-165) + - SX37 113.232 38.477 2012/7 山西省忻州市定襄县南庄村
Nanzhuang village, Dingxiang county, Xinzhou city, Shanxi province
Race 4 168±26.6 (135-212) + - SX49 112.802 39.484 2012/7 山西省朔州市山阴县安荣乡
An Rongxiang, Shanyin county, Shuozhou city, Shanxi province
Race 4 220±42.8 (138-270) + - SX51 112.468 39.511 2012/7 山西省朔州市平鲁区李西沟村
Lixigou village, Pinglu district, Shuozhou city, Shanxi province
Race 4 187.1±33.9 (130-222) + - SX59 112.613 36.935 2012/7 山西省长治市沁县西汤村
Xitang village, Qin county, Changzhi city, Shanxi province
Race 4 137.1±36 (90-196) + - SX37 113.232 38.477 2012/7 山西省忻州市定襄县南庄村
Nanzhuang village, Dingxiang county, Xinzhou city, Shanxi province
Race 2 170.4±50.6 (106-252) + - GJ 08 111.960 37.761 2019/8 山西省常安乡小娄峰村
Xiao Loufeng village, Chang'an township, Shanxi province
Race 2 95±32 (43-127) + - GJ 02 112.161 37.860 2019/8 山西省桃园办事处李家社村
Lijiashe village, Taoyuan office, Shanxi province
Race 2 659±283.5 (297-1138) + - GJ 04 112.188 37.785 2019/8 山西省邢家社乡龙子村
Longzi village, Xingjiashe township, Shanxi province
Race 2 286±80.5 (164-397) + - GJ 12 112.05 37.816 2019/8 山西省常安乡麻家口村
Majiakou village, Chang'an township, Shanxi province
Race 2 242.3±113 (74-454) + - GJ 16 111.924 37.861 2019/8 山西省岔口乡板四沟村
Bansigou village, Chakou township, Shanxi province
Race 2 112.3±44.7 (41-166) + - GJ 21 111.967 37.846 2019/8 山西省马兰镇南龙沟村
Nanlonggou village, Malan town, Shanxi province
[1] Bradley C A, Allen T, Sisson A J, Bergstrom G C, Wise K. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada from 2015-2019. Plant Health Prog, 2021, 22: 483-495.
doi: 10.1094/PHP-01-21-0013-RS
[2] Woo M O, Beard H, MacDonald M H, Brewer E P, Youssef R M, Kim H, Matthews B F. Manipulation of two α-endo-β-1,4- glucanase genes, AtCel6 and GmCel7, reduces susceptibility to Heterodera glycines in soybean roots. Mol Plant Pathol, 2014, 15: 927-939.
doi: 10.1111/mpp.12157
[3] Koenning S R, Wrather J A. Suppression of soybean yield potential in the continental United States by plant diseases from 2006 to 2009. Plant Health Prog, 2010, 11. doi: 10.1094/PHP-2010- 1122-01-RS.
[4] Kim K S, Vuong T D, Qiu D, Robbins R T, Shannon J G, Li Z, Nguyen H T. Advancements in breeding, genetics, and genomics for resistance to three nematode species in soybean. Theor Appl Genet, 2016, 129: 2295-2311.
pmid: 27796432
[5] Tylka G L, Marett C C. Distribution of the soybean cyst nematode, Heterodera glycines, in the United States and Canada: 1954 to 2014. Plant Health Prog, 2014, 15: 85-87.
[6] 练云, 王金社, 李海朝, 魏荷, 李金英, 武永康, 雷晨芳, 张辉, 王树峰, 郭建秋, 李月霞, 李志辉, 靳巧玲, 徐淑霞, 张志民, 杨彩云, 于会勇, 耿臻, 舒文涛, 卢为国. 黄淮大豆主产区大豆胞囊线虫生理小种分布调查. 作物学报, 2016, 42: 1479-1486.
doi: 10.3724/SP.J.1006.2016.01479
Lian Y, Wang J S, Li H C, Wei H, Li J Y, Wu Y K, Lei C F, Zhang H, Wang S F, Guo J Q, Li Y X, Li Z H, Jin Q L, Xu S X, Zhang Z M, Yang C Y, Yu H Y, Geng Z, Shu W T, Lu W G. Race distribution of soybean cyst nematode in the main soybean producing area of Huang-Huai Rivers Valley. Acta Agron Sin, 2016, 42: 1479-1486. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01479
[7] Shaibu A S, Li B, Zhang S R, Sun J M. Soybean cyst nematode-resistance: gene identification and breeding strategies. Crop J, 2020, 8: 892-904.
doi: 10.1016/j.cj.2020.03.001
[8] Riggs R D, Schmitt D P. Complete characterization of the race scheme for Heterodera glycines. J Nematol, 1988, 20: 392-395.
pmid: 19290228
[9] Niblack T L, Arelli P R, Noel G R, Opperman C H, Orf J H. A revised classification scheme for genetically diverse populations of Heterodera glycines. J Nematol, 2002, 34: 279-288.
pmid: 19265945
[10] Lu W G, Gai J Y, Li W D. Sampling survey and identification of races of soybean cyst nematode (Heterodera glycines Ichinohe) in Huang-Huai valleys. Agric Sci China, 2006, 5: 615-621.
doi: 10.1016/S1671-2927(06)60101-6
[11] Howland A, Monnig N, Mathesius J, Nathan M, Mitchum M G. Survey of Heterodera glycines population densities and virulence phenotypes during 2015-2016 in Missouri. Plant Dis, 2018, 102: 2407-2410.
doi: 10.1094/PDIS-04-18-0650-SR
[12] Mitchum M G. Soybean resistance to the soybean cyst nematode Heterodera glycines: an update. Phytopathology, 2016, 106: 1444-1450.
doi: 10.1094/PHYTO-06-16-0227-RVW
[13] Mitchum M G, Wrather J. Variability in distribution and virulence phenotypes of Heterodera glycines in Missouri during 2005. Plant Dis, 2007, 91.
[14] Lian Y, Guo J Q, Li H C, Wu Y K, Wei H, Wang J S, Li J Y, Lu W G. A new race (X12) of soybean cyst nematode in China. J Nematol, 2017, 49: 321-326.
pmid: 29062156
[15] 大豆种质抗胞囊线虫鉴定协作组. 大豆种质资源对大豆胞囊线虫1、3和4号生理小种的抗性鉴定. 大豆科学, 1993, 12: 91-99.
Coordinative Group of Evaluation of SCN. Evaluation of soybean germplasm for resistance to race 1, 3 and 4 of the soybean cyst nematode. Soybean Sci, 1993, 12: 91-99. (in Chinese with English abstract)
[16] Lian Y, Wei H, Wang J S, Lei C F, Li H C, Li J Y, Wu Y K, Wang S F, Zhang H, Wang T F, Du P, Guo J Q, Lu W G. Chromosome-level reference genome of X12, a highly virulent race of the soybean cyst nematode Heterodera glycines. Mol Ecol Resour, 2019, 19: 1637-1646.
doi: 10.1111/1755-0998.13068 pmid: 31339217
[17] Arelli P R, Young L D, Concibido V C. Inheritance of resistance in soybean PI 567516C to LY1 nematode population infecting cv. Hartwig. Euphytica, 2009, 165: 1-4.
doi: 10.1007/s10681-008-9760-z
[18] Zhou L J, Song L, Lian Y, Ye H, Usovsky M, Wan J R, Vuong T D, Nguyen H T. Genetic characterization of qSCN10 from an exotic soybean accession PI 567516C reveals a novel source conferring broad-spectrum resistance to soybean cyst nematode. Theor Appl Genet, 2021, 134: 859-874.
doi: 10.1007/s00122-020-03736-4
[19] Usovsky M, Ye H, Vuong T D, Patil G B, Nguyen H T. Fine-mapping and characterization of qSCN18, a novel QTL controlling soybean cyst nematode resistance in PI 567516C. Theor Appl Genet, 2021, 134: 621-631.
doi: 10.1007/s00122-020-03718-6
[20] Vuong T D, Sleper D A, Shannon J G, Nguyen H T. Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C. Theor Appl Genet, 2010, 121: 1253-1266.
doi: 10.1007/s00122-010-1385-7 pmid: 20559815
[21] Arelli P R, Concibido V C, Young L D. QTLs associated with resistance in soybean PI567516C to synthetic nematode population infecting cv. Hartwig. J Crop Sci, 2010, 13: 163-167.
[22] Wang D, Duan Y X, Wang Y Y, Zhu X F, Chen L J, Liu X Y, Chen J S. First report of soybean cyst nematode, Heterodera glycines, on soybean from Guangxi, Guizhou, and Jiangxi provinces, China. Plant Dis, 2015, 99: 893.
[23] Peng D, Peng H, Wu D Q, Huang W, Cui J K. First report of soybean cyst nematode (Heterodera glycines) on soybean from Gansu and Ningxia China. Plant Dis, 2015, 100: 150727061835002. doi: 10.1094/PDIS-04-15-0451-PDN.
doi: 10.1094/PDIS-04-15-0451-PDN
[24] Shi H, Zheng H. First report of soybean cyst nematode (Heterodera glycines) on tobacco in Henan, central China. Plant Dis, 2013, 97: 852.
[25] Hua C, Li C J, Hu Y F, Mao Y Z, You J, Wang M Z, Tian Z Y, Chen J S, Wang C L. Identification of HG types of soybean cyst nematode Heterodera glycines and resistance screening on soybean genotypes in northeast China. J Nematol, 2018, 50: 41-50.
doi: 10.21307/jofnem-2018-007
[26] Chen J, Zhou Y, Wang Y, Fan H, Liu X, Zhao D, Wang D, Duan Y, Zhu X, Chen L. Characterization of virulence phenotypes of Heterodera glycines in Heilongjiang, northeast China. Plant Dis, 2021, 105: 2056-2060.
doi: 10.1094/PDIS-04-20-0820-SR
[27] Jiao Y, Vuong T D, Yang L, Li Z, Noe J, Robbins R T, Joshi T, Dong X, Shannon J G, Nguyen H T. Identification of quantitative trait loci underlying resistance to southern root-knot and reniform nematodes in soybean accession PI 567516C. Mol Breed, 2015, 35: 131.
[1] 练云, 王金社, 魏荷, 李金英, 弓贵明, 王树峰, 张晶鹏, 李茂林, 郭建秋, 卢为国. 山西省古交市大豆胞囊线虫新小种X12分布调查[J]. 作物学报, 2021, 47(2): 237-244.
[2] 田宇,杨蕾,李英慧,邱丽娟. 抗大豆胞囊线虫SCN3-11位点的KASP标记开发和利用[J]. 作物学报, 2018, 44(11): 1600-1611.
[3] 李旭升,向小娇,申聪聪,杨隆维,陈凯,王小文,邱先进,朱小源,邢丹英,徐建龙. 水稻重测序核心种质资源的稻瘟病抗性鉴定与评价[J]. 作物学报, 2017, 43(06): 795-810.
[4] 练云,王金社,李海朝,魏荷,李金英,武永康,雷晨芳,张辉,王树峰,郭建秋,李月霞,李志辉,靳巧玲,徐淑霞,张志民,等. 黄淮大豆主产区大豆胞囊线虫生理小种分布调查[J]. 作物学报, 2016, 42(10): 1479-1486.
[5] 史学晖,李英慧,于佰双,郭勇,王家军,邱丽娟. 大豆胞囊线虫主效抗病基因Rhg4(GmSHMT)的CAPS/dCAPS标记开发和利用[J]. 作物学报, 2015, 41(10): 1463-1471.
[6] 刘波,李英慧,于佰双,王家军,刘玉林,常汝镇,邱丽娟. 中品03-5373对大豆胞囊线虫3号生理小种免疫抗性的遗传解析[J]. 作物学报, 2015, 41(01): 15-21.
[7] 丁俊杰,姜翠兰,顾鑫,杨晓贺,赵海红,申宏波,仕相林,刘春燕,胡国华,陈庆山. 利用与大豆灰斑病抗性基因连锁的SSR标记构建品种(系)的分子身份证[J]. 作物学报, 2012, 38(12): 2206-2216.
[8] 雷财林, 张国民, 程治军, 马军滔, 王久林, 辛爱华, 陈平, 肖家雷, 张欣, 刘迎雪, 郭秀平. 黑龙江省稻瘟病菌生理小种毒力基因分析与抗病育种策略[J]. 作物学报, 2011, 37(01): 18-27.
[9] 王宝祥,江玲,陈亮明,卢百关,王琦,黎光泉,樊继伟,程遐年,翟虎渠,徐大勇,万建民. 水稻黑条矮缩病抗性资源的筛选和抗性QTL 的定位[J]. 作物学报, 2010, 36(08): 1258-1264.
[10] 李秀侠;王振华;时立波;吴海燕;毕建杰;李多川. 大豆根内胞囊线虫的时空动态研究[J]. 作物学报, 2008, 34(12): 2190-2195.
[11] 杨作民;解超杰; 孙其信. 后条中32时期我国小麦条锈抗源之现状[J]. 作物学报, 2003, 29(02): 161-168.
[12] 雷财林;王久林;蒋琬如;凌忠专. 北方粳稻区稻瘟病菌生理小种与毒性及其变化动态的研究[J]. 作物学报, 2000, 26(06): 769-776.
[13] 高胜国. 南农92R系统白粉病抗源多抗性鉴定及其抗条锈性遗传分析[J]. 作物学报, 1999, 25(03): 389-391.
[14] 杨作民;唐伯让;沈克全;夏先春. 小麦抗病育种的战略问题——小麦对锈病、白粉病第二线抗源的建立和应用[J]. 作物学报, 1994, 20(04): 385-394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[2] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[3] 柳武革;王丰;金素娟;朱小源;李金华;刘振荣;廖亦龙;朱满山;黄慧君;符福鸿;刘宜柏. 利用分子标记辅助选择聚合Pi-1和Pi-2基因改良两系不育系稻瘟病抗性[J]. 作物学报, 2008, 34(07): 1128 -1136 .
[4] 常丽英;顾东祥;张文宇;杨杰;曹卫星;朱艳. 水稻叶片伸长过程的模拟模型[J]. 作物学报, 2008, 34(02): 311 -317 .
[5] 瞿瑛;刘素红;谢云. 植被覆盖度计算机模拟模型与参数敏感性分析[J]. 作物学报, 2008, 34(11): 1964 -1969 .
[6] 杨天育;沈裕琥;黄相国;何继红;吴国忠. 用A-PAGE鉴定谷子遗传多样性[J]. 作物学报, 2005, 31(01): 131 -133 .
[7] 韩湘玲;刘巽浩;孔扬庄. 黄淮海地区—熟与两熟制生产力的研究[J]. 作物学报, 1986, 12(02): 109 -116 .
[8] 宁堂原;李增嘉;焦念元;赵春;申加祥;张光辉;王浩. 不同熟期玉米品种春夏套作对籽粒淀粉含量及糊化特性的影响[J]. 作物学报, 2005, 31(01): 77 -82 .
[9] 韩龙植;曹桂兰;芮钟斗;安永平;乔永利;黄兴九;高熙宗. 水稻芽期耐冷性与其他耐冷性状的相关关系[J]. 作物学报, 2004, 30(10): 990 -995 .
[10] 陆艳婷;刘庆龙;王俊敏;严文潮;俞法明;金庆生. 利用等位基因特异扩增快速检测水稻香味基因[J]. 作物学报, 2008, 34(02): 243 -246 .