作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2451-2462.doi: 10.3724/SP.J.1006.2022.13052
李婷1,2(), 王亚鹏1,2, 董远1,2, 郭瑞士1, 李冬梅1, 唐雅伶1, 张兴华1,2, 薛吉全1,2, 徐淑兔1,2,*()
LI Ting1,2(), WANG Ya-Peng1,2, DONG Yuan1,2, GUO Rui-Shi1, LI Dong-Mei1, TANG Ya-Ling1, ZHANG Xing-Hua1,2, XUE Ji-Quan1,2, XU Shu-Tu1,2,*()
摘要:
配合力是育种过程中评价自交系潜力、筛选优良杂交组合的重要指标。籽粒大小相关性状是产量的重要构成因子, 解析籽粒大小相关性状及其配合力的遗传基础有助于高产玉米品种的培育。本研究以NCII遗传交配设计获得的246份玉米杂交组合为材料展开籽粒大小相关性状及其配合力的全基因组关联分析。研究表明, 粒长、粒宽、粒厚3个性状的广义遗传力分别为76.20%、86.52%和81.14%, 各性状与其配合力均呈显著正相关(0.58~0.82)。基于EMMAX (efficient mixed-model association expedited)算法检测到31、21、5个显著的SNP (single nucleotide polymorphism), 它们分别与性状、GCA (general combining ability)和SCA (special combining ability)关联, 其中10个SNP为性状与配合力共定位的。对共定位的SNP进行效应分析, 发现3个为加性效应、4个为部分显性效应、1个为超显性效应。结合公共数据库中基因注释及籽粒发育相关转录组数据, 在共定位、主效SNP位点附近共筛选到17个候选基因, 包括被报道与玉米籽粒发育相关的shrunken1、emp6等。本研究结果有助于进一步解析玉米籽粒大小及其配合力的遗传机制, 可为籽粒大小相关性状的遗传改良提供参考。
[1] | Troyer A F. Development of Hybrid Corn and the Seed Corn Industry. Handbook of Maize. New York: Springer, 2009. pp 87-114. |
[2] |
Zhang R Y, Xu G, Li J S, Yan J B, Li H H, Yang X H. Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement. Theor Appl Genet, 2018, 131: 1207-1221.
doi: 10.1007/s00122-018-3072-z |
[3] |
Sprague G F, Tatum L A. General vs specific combining ability in single crosse of corn. J Am Soc Agron, 1942, 34: 923-932.
doi: 10.2134/agronj1942.00021962003400100008x |
[4] |
Reif J C, Gumpert F M, Fischer S, Melchinger A E. Impact of interpopulation divergence on additive and dominance variance in hybrid populations. Genetics, 2007, 176: 1931-1934.
pmid: 17507673 |
[5] |
Chen J X, Zhou H, Xie W B, Xia D, Gao G J, Zhang Q L, Wang G W, Lian X M, Xiao J H, He Y Q. Genome-wide association analyses reveal the genetic basis of combining ability in rice. Plant Biotechnol J, 2019, 17: 2211-2222.
doi: 10.1111/pbi.13134 |
[6] | Geng X L, Sun G F, Qu Y J, Sarfraz Z, Jia Y H, He S P, Pan Z E, Sun J L, Iqbal M S, Wang Q L. Genome-wide dissection of hybridization for fiber quality-and yield-related traits in upland cotton. Plant J, 2020, 104: 1285. |
[7] | Zhou Z Q, Zhang C S, Lu X H, Wang L W, Hao Z F, Li M S, Zhang D G, Yong H J, Zhu H Y, Weng J F. Dissecting the genetic basis underlying combining ability of plant height related traits in maize. Front Plant Sci, 2018, 9: 1117. |
[8] | Lu X, Zhou Z Q, Yuan Z H, Zhang C S, Hao Z F, Wang Z H, Li M S, Zhang D G, Yong H J, Han J N, Li X H, Weng J F. Genetic dissection of the general combining ability of yield-related traits in maize. Front Plant Sci, 2020, 11: 788. |
[9] |
Liu X G, Hu X J, Li K, Liu Z F, Wu Y J, Feng G, Huang C L, Wang H W. Identifying quantitative trait loci for the general combining ability of yield-relevant traits in maize. Breed Sci, 2021, 71: 217-228.
doi: 10.1270/jsbbs.20008 |
[10] | 刘文童, 监立强, 郭晋杰, 赵永锋, 黄亚群, 陈景堂, 祝丽英. 玉米穗部性状及其一般配合力的关联分析. 植物遗传资源学报, 2020, 21: 706-715. |
Liu W T, Jian L Q, Guo J J, Zhao Y F, Huang Y Q, Chen J T, Zhu L Y. Association analysis of ear-related traits and their general combining ability in maize. J Plant Genet Resour, 2020, 21: 706-715. (in Chinese with English abstract) | |
[11] |
Li C H, Li Y X, Sun B C, Peng B, Liu C, Liu Z Z, Yang Z Z, Li Q C, Tan W W, Zhang Y. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica, 2013, 193: 303-316.
doi: 10.1007/s10681-013-0901-7 |
[12] |
Peng B, Li Y X, Wang Y, Liu C, Liu Z Z, Tan W W, Zhang Y, Wang D, Shi Y S, Sun B C. QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet, 2011, 122: 1305-1320.
doi: 10.1007/s00122-011-1532-9 pmid: 21286680 |
[13] |
Liu M, Tan X L, Yang Y, Liu P, Zhang X X, Zhang Y C, Wang L, Hu Y, Ma L L, Li Z L. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnol J, 2020, 18: 207-221.
doi: 10.1111/pbi.13188 |
[14] | Lan T R, He K H, Chang L G, Cui T T, Zhao Z X, Xue J Q, Liu J C. QTL mapping and genetic analysis for maize kernel size and weight in multi-environments. Euphytica, 2018, 214: 119. |
[15] | Li T, Qu J Z, Tian X K, Lao Y H, Wei N N, Wang Y H, Hao Y C, Zhang X H, Xue J Q, Xu S T. Identification of ear morphology genes in maize (Zea mays L.) using selective sweeps and association mapping. Front Genet, 2020, 11: 747. |
[16] | 倪先林, 张涛, 蒋开锋, 杨莉, 杨乾华, 曹应江, 文春阳, 郑家奎. 杂交稻特殊配合力与杂种优势、亲本间遗传距离的相关性. 遗传, 2009, 31: 849-854. |
Ni X L, Zhang T, Jiang K F, Yang L, Yang Q H, Cao Y J, Wen C Y, Zheng J K. Correlations between specific combining ability, heterosis and genetic distance in hybrid rice. Hereditas, 2009, 31: 849-854. (in Chinese with English abstract) | |
[17] |
Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis 1. Crop Sci, 1985, 25: 192-194.
doi: 10.2135/cropsci1985.0011183X002500010046x |
[18] |
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4326.
pmid: 7433111 |
[19] |
Danecek P, Auton A, Abecasis G, Albers C A, Banks E, Depristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T. The variant call format and VCFtools. Bioinformatics, 2011, 27: 2156-2158.
doi: 10.1093/bioinformatics/btr330 pmid: 21653522 |
[20] |
Ayres D L, Darling A, Zwickl D J, Beerli P, Holder M T, Lewis P O, Huelsenbeck J P, Ronquist F, Swofford D L, Cummings M P. BEAGLE: an application programming interface and high- performance computing library for statistical phylogenetics. Syst Biol, 2012, 61: 170-173.
doi: 10.1093/sysbio/syr100 |
[21] |
Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet, 2012, 44: 821-824.
doi: 10.1038/ng.2310 |
[22] | Huang X H, Yang S H, Gong J Y, Zhao Y, Feng Q, Gong H, Li W J, Zhan Q L, Cheng B Y, Xia J H. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat Commun, 2015, 6: 6258. |
[23] |
Gao X Y, Starmer J, Martin E R. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol, 2008, 32: 361-369.
doi: 10.1002/gepi.20310 |
[24] |
Liu H J, Wang Q, Chen M J, Ding Y H, Yang X R, Liu J, Li X H, Zhou C C, Tian Q L, Lu Y Q. Genome-wide identification and analysis of heterotic loci in three maize hybrids. Plant Biotechnol J, 2020, 18: 185-194.
doi: 10.1111/pbi.13186 |
[25] |
渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构. 作物学报, 2022, 48: 304-319.
doi: 10.3724/SP.J.1006.2022.13002 |
Qu J X, Feng W H, Zhang X H, Xu S T, Xue J Q. Dissecting the genetic architecture of maize kernel size based on genome-wide association study. Acta Agron Sin, 2022, 48: 304-319. (in Chinese with English abstract) | |
[26] |
Chen J, Zeng B, Zhang M, Xie S J, Wang G K, Hauck A, Lai J S. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol, 2014, 166: 252-264.
doi: 10.1104/pp.114.240689 |
[27] |
Huerta-Cepas J, Forslund K, Coelho L P, Szklarczyk D, Jensen L J, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol, 2017, 34: 2115-2122.
doi: 10.1093/molbev/msx148 pmid: 28460117 |
[28] |
Yu G C, Wang L G, Han Y Y, He Q Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16: 284-287.
doi: 10.1089/omi.2011.0118 |
[29] |
Chettoor A M, Yi G, Gomez E, Hueros G, Meeley R B, Becraft P W. A putative plant organelle RNA recognition protein gene is essential for maize kernel development. J Integr Plant Biol, 2015, 57: 236-246.
doi: 10.1111/jipb.12234 |
[30] | Qu Z, Li L Z, Luo J Y, Wang P, Yu S B, Mou T M, Zheng X F, Hu Z L. QTL mapping of combining ability and heterosis of agronomic traits in rice backcross recombinant inbred lines and hybrid crosses. PLoS One, 2012, 7: e28463. |
[31] |
Qi H H, Huang J, Zheng Q, Huang Y Q, Shao R X, Zhu L Y, Zhang Z X, Qiu F Z, Zhou G C, Zheng Y L. Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines. Theor Appl Genet, 2013, 126: 369-377.
doi: 10.1007/s00122-012-1985-5 |
[32] |
王博新, 王亚辉, 陈朋飞, 冯志前, 郝引川, 张仁和, 张兴华, 薛吉全. 源于陕A群、陕B群玉米自交系在不同密度条件下配合力分析. 作物学报, 2017, 43: 1328-1336.
doi: 10.3724/SP.J.1006.2017.01328 |
Wang B X, Wang Y H, Chen P F, Feng Z Q, Hao Y C, Zhang R H, Zhang X H, Xue J Q. Combining ability of maize inbred lines from Shaan A group and Shaan B group under different density conditions. Acta Agron Sin, 2017, 43: 1328-1336. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01328 |
|
[33] |
Jiang Y, Schmidt R H, Zhao Y, Reif J C. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat Genet, 2017, 49: 1741-1746.
doi: 10.1038/ng.3974 pmid: 29038596 |
[34] |
Li C H, Li Y X, Sun B C, Peng B, Liu C, Liu Z Z, Yang Z Z, Li Q C, Tan W W, Zhang Y. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica, 2013, 193: 303-316.
doi: 10.1007/s10681-013-0901-7 |
[35] |
Raihan M S, Liu J, Huang J, Guo H, Pan Q C, Yan J B. Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng 58 × SK maize population. Theor Appl Genet, 2016, 129: 1465-1477.
doi: 10.1007/s00122-016-2717-z |
[36] |
Liu Y, Wang L W, Sun C L, Zhang Z X, Zheng Y L, Qiu F Z. Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet, 2014, 127: 1019-1037.
doi: 10.1007/s00122-014-2276-0 |
[37] |
Dinges J R, Colleoni C, James M G, Myers A M. Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell, 2003, 15: 666-680.
pmid: 12615940 |
[38] | Zheng Y X, Yuan F, Huang Y Q, Zhao Y F, Jia X Y, Zhu L Y, Guo J J. Genome-wide association studies of grain quality traits in maize. Sci Rep, 2021, 11: 9797. |
[39] |
Liu J, Huang J, Guo H, Lan L, Wang H Z, Xu Y C, Yang X H, Li W Q, Tong H, Xiao Y J. The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiol, 2017, 175: 774-785.
doi: 10.1104/pp.17.00708 |
[40] |
Zhang K, Wang F, Liu B Y, Xu C Z, He Q X, Cheng W, Zhao X Y, Ding Z H, Zhang W, Zhang K W. ZmSKS13, a cupredoxin domain-containing protein, is required for maize kernel development via modulation of redox homeostasis. New Phytol, 2021, 229: 2163-2178.
doi: 10.1111/nph.16988 pmid: 33034042 |
[1] | 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167. |
[2] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[3] | 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376. |
[4] | 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883. |
[5] | 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937. |
[6] | 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006. |
[7] | 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015. |
[8] | 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124. |
[9] | 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850. |
[10] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[11] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[12] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[13] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[14] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[15] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
|