欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2463-2474.doi: 10.3724/SP.J.1006.2022.11071

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

青稞早抽穗主效QTL cqHD2H-2的遗传定位及候选基因分析

余鑫莲(), 李新(), 姚晓华, 姚有华, 白羿雄, 安立昆, 吴昆仑()   

  1. 青海大学农林科学院 / 青海省青稞遗传育种重点实验室 / 国家麦类改良中心青海青稞分中心, 青海西宁810016
  • 收稿日期:2021-08-11 接受日期:2022-02-25 出版日期:2022-10-12 网络出版日期:2022-04-01
  • 通讯作者: 吴昆仑
  • 作者简介:第一作者联系方式: 余鑫莲, E-mail: yuxl1777@163.com;
    李新, E-mail: lixinyynq@163.com第一联系人:

    ** 同等贡献

  • 基金资助:
    青海省自然科学基金项目(2021-ZJ-950Q);国家自然科学基金项目(32160493);财政部和农业农村部国家现代农业产业技术体系建设专项(CAS-05)

Genetic mapping and candidate gene analysis of the major QTL cqHD2H-2 for early heading in barley (Hordeum vulgare L.)

YU Xin-Lian(), LI Xin(), YAO Xiao-Hua, YAO You-Hua, BAI Yi-Xiong, AN Li-Kun, WU Kun-Lun()   

  1. Agriculture and Forestry Academy, Qinghai University / Qinghai Key Laboratory of Hulless Barley Genetics and Breeding / Hulless Barley Branch of State Wheat Improvement Centre, Xining 810016, Qinghai, China
  • Received:2021-08-11 Accepted:2022-02-25 Published:2022-10-12 Published online:2022-04-01
  • Contact: WU Kun-Lun
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    Natural Science Foundation Project of Qinghai Province(2021-ZJ-950Q);National Natural Science Foundation of China(32160493);China Agriculture Research System of MOF and MARA(CAS-05)

摘要:

抽穗期是决定青稞品种的种植区域范围和季节适应性的重要农艺性状, 也是青稞成熟早晚的关键标志。在前期实验中, 青稞早抽穗主效QTL cqHD2H-2被定位于青稞2H染色体上约84 Mb的区间内, 为进一步验证该位点的有效稳定性, 本研究对cqHD2H-2进行定位验证及候选基因分析。利用早抽穗青稞品种DZZ与晚抽穗青稞品种KL10构建F5群体, 在cqHD2H-2区段内开发InDel标记, 共筛选到3个与目标基因紧密连锁的分子标记, 扫描F5群体中的25株极端早抽穗和25株极端晚抽穗单株, 获得1个侧翼共显性标记, 将cqHD2H-2进一步限定在标记PA22和Va07之间约40 Mb的区间内。该区段通过与大麦及水稻同源共线性比对, 筛选到水稻抽穗期基因DTH8在大麦中的同源基因HORVU2Hr1G087460 (HvNF-YB3)。比较HvNF-YB3基因全长, 发现Hv2H.NF-YB3 (DZZ)与Hv2H.nf-yb3 (KL10)编码区由1个外显子组成, 编码区为750 bp, 启动子区为2116 bp, Hv2H.NF-YB3Hv2H.nf-yb3启动子区存在3个SNPs。Hv2H.NF-YB3Hv2H.nf-yb3的表达分析表明, Hv2H.NF-YB3Hv2H.nf-yb3在转录水平上存在显著差异, Hv2H.NF-YB3Hv2H.nf-yb3在茎、芒和颖壳组织中均有表达, 但相较于Hv2H.NF-YB3, Hv2H.nf-yb3在各组织中的表达量均显著下降, 且二者随着生育期的推进, 表达量均依次降低。因此, Hv2H.NF-YB3可能在青稞抽穗时间调控中发挥作用。本研究为青稞早抽穗分子标记辅助选择育种体系的建立及目标基因的图位克隆奠定了基础。

关键词: 青稞, cqHD2H-2, 分子标记, 遗传图谱, HvNF-YB3

Abstract:

Heading date is closely linked with agronomic performance, which is responsible for the regional and seasonal adaptation of barley varieties, and it is also a key indicator of the early or later maturity in barley. Previous studies indicated that the major QTL cqHD2H-2 for early heading was located in an 84 Mb interval on chromosome 2H of barley. To further verify the effective stability of the cqHD2H-2, in this study, we validated this locus and analyzed candidate genes. New InDel markers were developed based on the primary mapping region of cqHD2H-2 through an F5 population constructed from the cross of DZZ (early heading) and KL10 (late heading). A total of three markers tightly linked to the target gene were obtained, and one flank marker was confirmed as co-dominant marker by scanning 25 extreme early heading and 25 extreme late heading individuals of F5 population, which mapped the locus cqHD2H-2 located in a 40 Mb region between PA22 and Va07 on the chromosome 2H. The homologous gene HORVU2Hr1G087460 (HvNF-YB3) of rice heading date gene DTH8 in barley was acquired by homologous collinearity comparison of the region between barley and rice. Compared with the full length of HvNF-YB3 gene, the encoding region of Hv2H.NF-YB3 (DZZ) and Hv2H.nf-yb3 (KL10) was composed of an exon. The encoding region was 750 bp, and the promoter region was 2116 bp. There were three SNPs detected between the promoter region of Hv2H.NF-YB3 and Hv2H.nf-yb3. The relative expression levels of Hv2H.NF-YB3 and Hv2H.nf-yb3 showed that there were significant differences in the transcriptional level. Hv2H.NF-YB3 and Hv2H.nf-yb3 expressed in stem, awn, and glume, compared with Hv2H.NF-YB3, the relative expression levels of Hv2H.nf-yb3 significantly decreased in the three tissues. The relative expression levels gradually decreased with the development of the plants. In conclusion, Hv2H.NF-YB3 may play a role in the regulation of heading time in barley. The results were useful for developing early heading lines by marker-assisted selection (MAS) and laid a foundation for fine mapping and subsequent map-based cloning of cqHD2H-2.

Key words: barley, cqHD2H-2, molecular marker, genetic map, HvNF-YB3

表1

引物信息"

引物
Primer
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
用途
Application
Hv CGCACTCGCATCTCTCGAT CGAGAATACTGTGCCGCCAA gDNA sequence amplification
Hvpro GCCTCGCTACCCCTACTATG CTTGGAGATCTTGGCGTTCG Promoter sequence amplification
qHv GAGTGCGTGTCCGAGTTCAT GTTGATGGTCTTGCGCTTCTC Real-time PCR
18SrRNA CGGCTACCACATCCAAGGAA GCTGGAATTACCGCGGCT Real-time PCR
PA22 CCTCCTCTCTCCGCTCCAAC CGCCTCAGCTATCTTTAAGAGCA Flanking marker
Va07 TCGTATTCTTAGAACCATTCAACTCTCA ATTGAAAGAAAACAAGAGATAGCAGCA Flanking marker
VA07 TGGAGATCATTGCATGGTTCACAT ATTGAAAGAAAACAAGAGATAGCAGCA Flanking marker

图1

引物Va07在极端抽穗单株中的检测 P1、P2: 双亲单株(1~4); B1 (early heading): 极端早抽穗单株(1~25); B2 (late heading): 极端晚抽穗单株(1~25); 红色箭头: 重组单株; M: DNA分子量标记。"

表2

双亲及极端抽穗单株基因分型结果"

特异性标记
Specific marker
DZZ KL10 极端晚抽穗单株(25) Extreme late heading plant
HVKASI AA aa AA AA AA AA - aa aa AA aa AA AA aa AA - AA - - aa aa AA AA AA AA AA aa
AA - aa aa AA aa aa aa aa aa AA aa - aa aa AA aa aa AA AA AA AA AA AA AA
PA20 AA aa AA AA AA AA AA AA AA AA aa AA AA aa AA AA AA AA AA AA aa AA AA AA aa AA aa
AA aa aa aa AA - aa - aa aa AA - aa aa aa aa AA AA aa aa AA AA aa AA AA
PA22 AA aa AA AA AA AA AA AA AA AA AA AA AA aa AA AA AA AA AA AA aa AA AA AA aa AA aa
aa aa aa aa AA aa aa - aa aa AA aa aa aa - aa aa aa aa aa aa aa aa aa aa
PA23 AA aa AA AA AA AA AA AA AA AA AA AA AA aa AA AA AA AA AA AA aa AA AA AA aa AA aa
aa aa aa aa AA aa aa - aa aa AA aa aa aa aa aa aa aa aa aa aa aa aa aa aa
PA28 AA aa AA AA AA AA AA AA AA AA AA AA AA aa AA AA AA aa AA AA AA AA AA AA AA AA aa
aa aa aa aa AA aa aa - aa aa AA AA AA aa aa aa AA aa aa aa aa aa AA AA AA
PA30 AA aa AA AA AA aa AA aa AA AA aa aa AA aa AA AA aa aa aa AA aa AA aa aa aa AA aa
aa aa aa AA AA aa aa aa aa aa AA AA aa aa aa aa aa aa aa aa aa aa aa aa aa
VA07 AA aa AA AA AA AA AA AA AA AA AA AA AA aa AA AA AA aa AA aa AA AA AA AA AA AA aa
aa aa aa aa AA aa aa - aa aa - AA AA aa aa aa aa aa aa aa aa aa aa AA AA
Va07 AA aa AA - AA AA AA AA AA AA AA AA AA aa AA AA AA aa AA aa AA AA AA AA AA AA aa
aa aa aa aa AA aa aa - aa aa AA AA AA aa aa aa aa aa aa aa aa aa aa AA AA

图2

cqHD2H-2的遗传和比较作图 a: cqHD2H-2的分子标记连锁图; b: 大麦2H染色体上与cqHD2H-2连锁的分子标记的物理图谱; c: 水稻染色体上对应的同源基因DTH8。"

图3

Hv2H.NF-YB3与Hv2H.nf-yb3 gDNA序列比较 Hordeum_vulgare_HORVU2Hr1G087460: 大麦参考基因序列; 蓝色标记: SNP位点。"

图4

Hv2H.NF-YB3与Hv2H.nf-yb3启动子区序列比较 蓝色标记: SNP位点。"

表3

Hv2H.NF-YB3启动子区元件分析"

顺式作用元件
Cis-acting element
核心序列
Core motif
数量
Number
位置
Position
功能
Function
AT-rich element ATAGAAATCAA 1 +204 富含AT的DNA结合蛋白(ATBP-1)结合位点
Binding site of AT-rich DNA binding protein (ATBP-1)
A-box CCGTCC 3 -1212/+1991/+1976 顺式调控元件
Cis-acting regulatory element
ABRE ACGTG/TACGGTC/
GCAACGTGTC
5 +699/+1851/+1013/
-901/+1848
参与脱落酸响应的顺式作用元件
Cis-acting element involved in the abscisic acid responsiveness
ARE AAACCA 1 +50 厌氧诱导必需顺式调节元件
Cis-acting regulatory element essential for the anaerobic induction
ATC-motif AGTAATCT/
AATCTAATCC
1 -1405 参与光响应的部分保守DNA模块
Part of a conserved DNA module involved in light responsiveness
ATCT-motif AATCTAATCC 1 +1362 参与光响应的部分保守DNA模块
Part of a conserved DNA module involved in light responsiveness
AuxRR-core GGTCCAT 2 -280/+1016 参与生长素响应的顺式调控元件
Cis-acting regulatory element involved in auxin responsiveness
Box 4 ATTAAT 1 +763 参与光响应的部分保守DNA模块
Part of a conserved DNA module involved in light responsiveness
CAAT-box CCAAT/CAAT 29 +35/-471/+916/+1066/
+1154/-1156/-1428/
-1628, etc.
启动子和增强子区的共顺式作用元件
Common cis-acting element in promoter and enhancer regions
CCAAT-box
CAACGG 1 +814 MYBHv1结合位点
MYBHv1 binding site
CGTCA-motif CGTCA 2 +750/+910 参与茉莉酸甲酯响应的顺式调控元件
Cis-acting regulatory element involved in the MeJA-responsiveness
circadian CAAAGATATC 1 +79 参与昼夜节律控制的顺式调节元件
Cis-acting regulatory element involved in circadian control
GATA-motif GATAGGG/
AAGGATAAGG
2 -981/-1364 部分光响应元件
Part of a light responsive element
G-box TAACACGTAG/
CACGTT/CACGAC
4 -1319/-1849/-698/
-1850
参与光响应的顺式调节元件
Cis-acting regulatory element involved in light responsiveness
GT1-motif GGTTAA 1 -1161 光响应元件
Light responsive element
MRE AACCTAA 1 +1362 参与光响应的MYB结合位点
MYB binding site involved in light responsiveness
O2-site GATGATGTGG 2 -310/+1681 参与玉米醇溶蛋白代谢调节的顺式调控元件
Cis-acting regulatory element involved in zein metabolism regulation
TATA-box TATA/TATAA/
TATAAAT/ATATAT/
ATATAA/TATACA/
TACAAAA
27 -680/+681/+876/
-1186/
-1313/+1470//-1614/
-1811/+1930, etc.
转录起始-30左右的核心启动子元件
Core promoter element around -30 of transcription start
TCA-element TCAGAAGAGG/
CCATCTTTTT
2 +108/+1565 参与水杨酸响应的顺式作用元件
Cis-acting element involved in salicylic acid responsiveness
TCT-motif TCTTAC 1 -951 部分光响应元件
Part of a light responsive element
TGACG-motif TGACG 2 -750/-910 参与茉莉酸甲酯响应的顺式调控元件
Cis-acting regulatory element involved in the MeJA-responsiveness

图5

Hv2H.NF-YB3与Hv2H.nf-yb3在不同生育期的不同组织中的表达"

[1] 苏乐平, 姚晓华, 吴昆仑, 杨雪, 田昊人, 黄书晴. 大麦(青稞)籽粒颜色相关研究进展. 江苏农业科学, 2019, 47(18): 70-74.
Su L P, Yao X H, Wu K L, Yang X, Tian H R, Huang S Q. Research progress on grain color of barley (hulless barley). Jiangsu Agric Sci, 2019, 47(18): 70-74 (in Chinese)
[2] 张唐伟, 余耀斌, 拉琼. 西藏不同青稞品种的品质差异分析. 大麦与谷类科学, 2017, 34(1): 28-32.
Zhang T W, Yu Y B, La Q. Evaluation of the qualitative differences among different Tibetan Highland barley varieties. Barl Cereal Sci, 2017, 34(1): 28-32. (in Chinese with English abstract)
[3] 臧靖巍, 阚建全, 陈宗道, 赵国华. 青稞的成分研究及其应用现状. 中国食品添加剂, 2004, (4): 43-46.
Zang J W, Kan J Q, Chen Z D, Zhao G H. Applications of barley and study on its components. China Food Add, 2004, (4): 43-46 (in Chinese with English abstract)
[4] 冯宗云. 徐廷文大麦学术文集. 成都: 四川科学技术出版社, 2006. pp 217-222.
Feng Z Y. Professor Xu Tingwen’s Works of Barley Science. Chengdu: Sichuan Scientific and Technical Publishers, 2006. pp 271-222 (in Chinese)
[5] 强小林, 迟德钊, 冯继林. 青藏高原区域青稞生产与发展现状. 西藏科技, 2008, 6(3): 11-17.
Qiang X L, Chi D Z, Feng J L. Status production status and development of Tibetan Plateau region of barley. Tibet Sci Technol, 2008, 6(3): 11-17 (in Chinese)
[6] 韦泽秀, 卓玛, 曲航, 马瑞萍. 海拔与积温梯度对春青稞生长的影响. 西藏农业科技, 2018, 40(增刊1): 15-19.
Wei Z X, Zhuo M, Qu H, Ma R P. Effects of altitude and accumulated temperature gradient on growth of spring highland barley. Tibet J Agric Sci, 2018, 40(S1): 15-19 (in Chinese with English abstract)
[7] 吴昆仑, 姚晓华, 姚有华, 白羿雄, 迟德钊. 多元化用途背景下青稞品种选育的思考与实践. 西藏农业科技, 2018, 40(增刊1): 1-2.
Wu Q L, Yao X H, Yao Y H, Bai Y X, Chi D Z. Reflections and practice on breeding barley varieties under the background of diversified uses. Tibet J Agric Sci, 2018, 40(S1): 1-2 (in Chinese with English abstract)
[8] 达瓦顿珠. 中国大麦低温春化和光周期基因单倍型及表型关联分析. 中国农业科学院研究生院博士学位论文, 北京, 2015. p 17.
Dawadondrop. Haplotypes and Phenotypic Association Analysis of Vernalization and Photoperiod Genes in Chinese Barley. PhD Dissertation of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2015. p 17. (in Chinese with English abstract)
[9] 陈建平. 普通小麦与栽培大麦之间早熟性机制的差异. 大麦科学, 1990, (3): 52-53.
Chen J P. Differences in early maturity mechanism between common wheat and cultivated barley. Barl Cereal Sci, 1990, (3): 52-53 (in Chinese)
[10] Laurie D A, Pratchett N, Snape J W, Bezant J H. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome, 1995, 38: 575-585.
pmid: 18470191
[11] Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M. Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity, 1996, 77: 64-73.
doi: 10.1038/hdy.1996.109
[12] Karsai I, Szücs P, Mészáros K, Filichkina T, Hayes P M, Skinner J S, Láng L, Bedö Z. The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet, 2005, 110: 1458-1466.
pmid: 15834697
[13] Börner A, Buck-Sorlin G H, Hayes P M, Malyshev S, Korzun V. Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breed, 2002, 121: 129-132.
doi: 10.1046/j.1439-0523.2002.00691.x
[14] Comadran J, Russell J R, Booth A, Pswarayi A, Ceccarelli S, Grando S, Stanca A M, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, van Eeuwijk F A, Thomas W T B, Romagosa I. Mixed model association scans of multi- environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theor Appl Genet, 2011, 122: 1363-1373.
doi: 10.1007/s00122-011-1537-4 pmid: 21279625
[15] Wang H Y, Smith K P, Combs E, Blake T, Horsley R D, Muehlbauer G J. Effect of population size and unbalanced data sets on QTL detection using genome-wide association mapping in barley breeding germplasm. Theor Appl Genet, 2012, 124: 111-124.
doi: 10.1007/s00122-011-1691-8
[16] Mesfin A, Smith K P, Dill-Macky R, Evans C K, Waugh R, Gustus C D, Meuhlbauer G J. Quantitative trait loci for Fusarium head blight resistance in barley detected in a two-rowed by six-rowed population. Crop Sci, 2003, 43: 307-318.
doi: 10.2135/cropsci2003.3070
[17] Pauli D, Muehlbauer G J, Smith K P, Cooper B, Hole D, Obert D O, Ullrich S E, Blake T K. Association mapping of agronomic QTLs in US spring barley breeding germplasm. Plant Genome, 2014, 7: plantgenome2013.11.0037.
[18] Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif J C, Pillen K. Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genom, 2015, 16: 290.
[19] Tranquilli G, Dubcovsky J. Epistatic interaction between vernalization genes Vrn-Am1 and Vrn-Am2 in diploid wheat. J Hered, 2000, 91: 304-306.
pmid: 10912677
[20] Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268.
doi: 10.1073/pnas.0937399100
[21] Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, Sanmiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644.
doi: 10.1126/science.1094305
[22] Fu D, Szücs P, Yan L, Helguera M, Skinner J S, von Zitzewite J, Hayes P M, Dubcovsky J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genom, 2005, 273: 54-65.
doi: 10.1007/s00438-004-1095-4
[23] Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581-19586.
doi: 10.1073/pnas.0607142103
[24] Decousset L, Griffiths S, Dunford R P, Pratchett N, Laurie D A. Development of STS markers closely linked to the Ppd-H1 photoperiod response gene of barley (Hordeum vulgare L.). Theor Appl Genet, 2000, 101: 1202-1206.
doi: 10.1007/s001220051598
[25] Turner A, Beales J, Faure S, Dunford F R, Laurie D A. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 2005, 310: 1031-1034.
doi: 10.1126/science.1117619
[26] Xia T, Zhang L, Xu J, Wang L, Liu B L, Hao M, Chang X, Zhang T W, Li S M, Zhang H G, Liu D C, Shen Y H. The alternative splicing of EAM8 contributes to early flowering and short-season adaptation in a landrace barley from the Qinghai-Tibetan Plateau. Theor Appl Genet, 2017, 130: 757-766.
doi: 10.1007/s00122-016-2848-2
[27] 刘仁虎, 孟金陵. MapDraw, 在Excel中绘制遗传连锁图的宏. 遗传, 2003, 25: 317-321.
Liu R H, Meng J L. MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing), 2003, 25: 317-321. (in Chinese with English abstract)
[28] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30, 325-327.
[29] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[30] Li X, Yu X L, Yao X H, Yao Y H, Bai Y X, An L K, Wu K L. Mapping the major quantitative trait loci of the heading date trait in Qingke barley (Hordeum vulgare L.) from the Qinghai-Tibetan Plateau via genotyping by sequencing. All Life, 2021, 14: 882-893.
doi: 10.1080/26895293.2021.1980439
[31] Nitcher R, Distelfeld A, Tan C T, Yan L L, Dubcovsky J. Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley. Mol Genet Genom, 2013, 288: 261-275.
doi: 10.1007/s00438-013-0746-8
[32] Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 1747-1758.
doi: 10.1104/pp.110.156943
[33] Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319-330.
doi: 10.1093/mp/ssq070
[34] Hou X, Zhou J, Liu C, Liu L, Shen L S, Yu H. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat Commun, 2014, 5: 4601.
[35] Wei Q, Ma C, Xu Y, Wang T L, Chen Y Y, Lu J, Zhang L L, Jiang C Z, Hong B, Gao J P. Control of chrysanthemum flowering through integration with an aging pathway. Nat Commun, 2017, 8: 829.
[36] Liang M, Hole D, Wu J, Blake T, Wu Y J. Expression and functional analysis of NUCLEAR FACTOR-Y, subunit B genes in barley. Planta, 2012, 235: 779-791.
doi: 10.1007/s00425-011-1539-0
[37] 田晨菲, 李建华, 王勇. 植物合成生物学调控元件的研究进展. 植物生理学报, 2020, 56: 2261-2274.
Tian C F, Li J H, Wang Y. Research advances of regulatory elements in plant synthetic biology. Plant Physiol J, 2020, 56: 2261-2274. (in Chinese with English abstract)
[1] 惠志明, 徐建飞, 简银巧, 卞春松, 段绍光, 胡军, 李广存, 金黎平. 基于2b-RAD测序的四倍体马铃薯熟性相关的分子标记开发[J]. 作物学报, 2022, 48(9): 2274-2284.
[2] 徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管[J]. 作物学报, 2022, 48(8): 1853-1870.
[3] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[6] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 周阳, 张宏军, 王晨阳, 李洪杰, 买春艳, 杨丽, 刘宏伟, 于立强, 于广军, 刘秉华. 矮败小麦技术体系在黄淮冬麦区南片抗赤霉病育种中的应用[J]. 作物学报, 2022, 48(11): 2683-2690.
[9] 宋博文, 王朝欢, 赵哲, 陈淳, 黄明, 陈伟雄, 梁克勤, 武名. 基于高密度遗传图谱对水稻粒形QTL定位及分析[J]. 作物学报, 2022, 48(11): 2813-2825.
[10] 李建领, 公丹, 王素华, 陈红霖, 程须珍, 熊涛, 王丽侠. 豇豆SNP高密度遗传图谱构建及重要农艺性状QTL定位[J]. 作物学报, 2022, 48(10): 2475-2482.
[11] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[12] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[13] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[14] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[15] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[2] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[3] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[4] 刘珊珊;田福东;高丽辉;王志坤;葛玉君;刁桂珠;李文滨. 大豆7S球蛋白亚基组成对品质性状的影响[J]. 作物学报, 2008, 34(05): 909 -913 .
[5] 汤圣祥;江云珠;魏兴华;李自超; 余汉勇. 中国栽培稻同工酶的遗传多样性[J]. 作物学报, 2002, 28(02): 203 -207 .
[6] 俞履圻;林权. 中国栽培稻种亲缘的研究[J]. 作物学报, 1962, 1(03): 232 -258 .
[7] 李金才;魏凤珍;王成雨;尹钧. 孕穗期土壤渍水逆境对冬小麦根系衰老的影响[J]. 作物学报, 2006, 32(09): 1355 -1360 .
[8] 林瑞余;陈鸿飞;邓家耀;梁义元;梁康迳;林文雄. 不同栽培模式早稻-再生稻的能量积累与热值分析[J]. 作物学报, 2007, 33(11): 1794 -1801 .
[9] 戴忠民;尹燕枰;张敏;李文阳;闫素辉;蔡瑞国;王振林. 旱作和灌溉条件下小麦籽粒淀粉粒粒度的分布特征[J]. 作物学报, 2008, 34(05): 795 -802 .
[10] 董桂春;王余龙;吴华;周小冬;单玉华;王坚刚;蔡惠荣;蔡建中. 水稻主要根系性状对施氮时期反应的品种间差异[J]. 作物学报, 2003, 29(06): 871 -877 .