作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2435-2442.doi: 10.3724/SP.J.1006.2022.11088
郭宝健1,2(), 王爽1,2, 吕超1,2, 王菲菲1,2, 许如根1,2,*()
GUO Bao-Jian1,2(), WANG Shuang1,2, LYU Chao1,2, WANG Fei-Fei1,2, XU Ru-Gen1,2,*()
摘要:
植物LBD基因家族是植物特异的转录因子家族, 在调控植物生长发育和氮素代谢方面起到重要的作用。基因组共线性分析表明, 大麦(Hordeum vulgare L.) HvLBD19基因为水稻ARL1和玉米RTCS基因直系同源基因。基因时空表达分析结果表明, 该基因在不定根中表达丰度最高, 且受外源生长素诱导表达, 所编码蛋白定位于细胞核内。转基因功能验证结果表明, 苗期超表达株系相对于野生型不定根长度增长近1倍, 不定根数目增加40%。本研究初步明确了HvLBD19基因影响大麦不定根发育, 为进一步深入探究大麦HvLBD19基因调控不定根发育的分子机制提供了基础。
[1] | Shuai B, Reynagapeña C G, Springer P S. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol, 2002, 129: 747-761. |
[2] |
Rubin G, Tohge T, Matsuda F, Saito K, Scheible W. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell, 2009, 21:3567-3584.
doi: 10.1105/tpc.109.067041 |
[3] |
Chanderbali A S, He F M, Soltis P S, Soltis D E. Out of the water: origin and diversification of the LBD gene family. Mol Biol Evol, 2015, 32: 1996-2000.
doi: 10.1093/molbev/msv080 pmid: 25839188 |
[4] |
Matsumura Y, Iwakawa H, Machida Y. Characterization of genes in the ASYMMETRIC LEAVES2/ LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. Plant J, 2009, 58: 525-537.
doi: 10.1111/j.1365-313X.2009.03797.x |
[5] | Zhang Y M, Zhang S Z, Zheng C C. Genomewide analysis of LATERAL ORGAN BOUNDARIES domain gene family in Zea mays. J Genet, 2014, 93: 79-91. |
[6] |
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell, 2007, 19: 118-130.
pmid: 17259263 |
[7] |
Guo B J, Wang J, Lin S, Tian Z, Zhou K, Luan H Y, Lyu C, Zhang X Z, Xu R G. A genome-wide analysis of the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) gene family in barley (Hordeum vulgare L.). J Zhejiang Univ Sci B, 2016, 17: 763-774.
doi: 10.1631/jzus.B1500277 |
[8] |
Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano M, Matsuoka M. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell, 2005, 17: 1387-1396.
doi: 10.1105/tpc.105.030981 |
[9] |
Liu H J, Wang S F, Yu X B, Yu J, He X W, Zhang S L, Shou H X, Wu P. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J, 2005, 43: 47-56.
doi: 10.1111/j.1365-313X.2005.02434.x |
[10] | Taramino G, Sauer M, Stauffer J L, Multani D, Niu X M, Sakai H, Hochholdinger F. The maize (Zea mays L.) RTCS gene encodes an LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J, 2007, 50: 11. |
[11] |
Ori N, Eshed Y, Chuck G, Bowman J L, Hake S. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development, 2000, 127: 5523-5532.
doi: 10.1242/dev.127.24.5523 pmid: 11076771 |
[12] |
Semiarti E, Ueno Y, Tsukay H, Iwakawa H, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development, 2001, 128: 1771-1783.
doi: 10.1242/dev.128.10.1771 pmid: 11311158 |
[13] |
Byrne M E, Simorowski J, Martienssen R A. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development, 2002, 129: 1957-1965.
doi: 10.1242/dev.129.8.1957 pmid: 11934861 |
[14] |
Machida C, Nakagawa A, Kojima S, Takahashi H, Machida Y. The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis. Wires Dev Biol, 2015, 4: 655-671.
doi: 10.1002/wdev.196 |
[15] |
Oh S A, Park K S, Twell D, Park S K. The SIDECAR POLLEN gene encodes a microspore-specific LOB/AS2 domain protein required for the correct timing and orientation of asymmetric cell division. Plant J, 2010, 64: 839-50.
doi: 10.1111/j.1365-313X.2010.04374.x |
[16] |
Albinsky D, Kusano M, Higuchi M, Hayashi N, Kobayashi M, Fukushima A, Mori M, Ichikawa T, Matsui K, Kuroda H, Horii Y, Tsumoto Y, Sakakibara H, Hirochika H, Matsui M, Saito K. Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism. Mol Plant, 2010, 3: 125-142.
doi: 10.1093/mp/ssp069 pmid: 20085895 |
[17] |
Chen Y M, Song W J, Xie X M, Wang Z H, Guan P F, Peng H R, Jiao Y N, Ni Z F, Sun Q X, Guo W L. A Collinearity- incorporating homology inference strategy for connecting emerging assemblies in Triticeae tribe as a pilot practice in the plant pangenomic era. Mol Plant, 2020, 13: 1694-1708.
doi: 10.1016/j.molp.2020.09.019 |
[18] | Guo B J, Wei Y F, Xu R B, Lin S, Luan H Y, Lyu C, Zhang X Z, Song X Y, Xu R G. Genome-wide analysis of APETALA2/ ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L.). PLoS One, 2016, 11: e0161322. |
[19] | Jones H D, Shewry P R, eds. Transgenic wheat, barley and oats:barley transformation using agrobacterium-mediated techniques. In: Methods in Molecular Biology. New York: Humana Press, 2009. pp 137-147. |
[20] |
Majer C, Xu C, Berendzen K W, Hochholdinger F. Molecular interactions of ROOTLESS CONCERNING CROWN AND SEMINAL ROOTS, a LOB domain protein regulating shoot- borne root initiation in maize (Zea mays L.). Philos Trans R Soc Lond B Biol Sci, 2012, 367: 1542-1551.
doi: 10.1098/rstb.2011.0238 |
[21] |
Shao Y, Zhou H Z, Wu Y, Zhang H, Lin J, Jiang X Y, He Q J, Zhu J S, Li Y G, Yu H, Mao C Z. OsSPL3, an SBP-domain protein, regulates crown root development in rice. Plant Cell, 2019, 31: 1257-1275.
doi: 10.1105/tpc.19.00038 |
[22] | 张焕欣, 董春娟, 李福凯, 王红飞, 尚庆茂. 植物不定根发生机理的研究进展. 西北植物学报, 2017, 37: 1457-1464. |
Zhang H X, Dong C J, Li F K, Wang H F, Shang Q M. Progress on the regulatory mechanism of adventitious rooting. Acta Bot Boreal-Occident Sin, 2017, 37: 1457-1464. (in Chinese with English abstract) |
[1] | 郭楠楠, 刘天策, 史硕, 胡心亭, 牛亚丹, 李亮. 长链非编码RNA (LncRNA)在印度梨形孢促进大麦根部生长发育中的调控作用[J]. 作物学报, 2022, 48(7): 1625-1634. |
[2] | 贺军与, 钟伟, 陈云琼, 王卫斌, 熊静蕾, 蒋亚丽, 施辉蒙, 陈升位. 大麦籽粒发育进程中7种黄酮类化合物的积累特性分析[J]. 作物学报, 2021, 47(8): 1624-1630. |
[3] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[4] | 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531. |
[5] | 徐婷婷, 汪巧玲, 邹淑琼, 狄佳春, 杨欣, 朱银, 赵涵, 颜伟. 基于高通量测序的大麦InDel标记开发及应用[J]. 作物学报, 2020, 46(9): 1340-1350. |
[6] | 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461. |
[7] | 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61. |
[8] | 时丽洁,蒋枞璁,王方梅,杨平,冯宗云. 大麦蛋白质二硫键异构酶基因家族的鉴定与表达分析[J]. 作物学报, 2019, 45(9): 1365-1374. |
[9] | 胡德益,蔡露,陈光登,张锡洲,刘春吉. 不同磷水平下大麦分蘖期磷效率相关性状QTL定位分析[J]. 作物学报, 2017, 43(12): 1746-1759. |
[10] | 张利莎,董国清,扎桑,卓嘎,王德良,谷方红,袁兴淼,张京,郭刚刚. 基于EST-SSR和SNP标记的大麦麦芽纯度检测[J]. 作物学报, 2015, 41(08): 1147-1154. |
[11] | 司二静,张宇,汪军成,孟亚雄,李葆春,马小乐,尚勋武,王化俊. 大麦农艺性状与SSR标记的关联分析[J]. 作物学报, 2015, 41(07): 1064-1072. |
[12] | 陈坤梅,李宏伟,林凡云,陈耀锋,李滨,郑琪,李振声. 利用病毒介导基因沉默方法研究小麦抗光氧化相关基因[J]. 作物学报, 2014, 40(11): 1905-1913. |
[13] | 姜晓东,郭刚刚,张京. Amy6-4基因遗传多样性及其与α-淀粉酶活性的关联分析[J]. 作物学报, 2014, 40(02): 205-213. |
[14] | 赖勇,孟亚雄,王晋,范贵强,司二静,王鹏喜,李葆春,马小乐,杨轲,尚勋武,王化俊. 大麦遗传多样性及连锁不平衡分析[J]. 作物学报, 2013, 39(12): 2154-2161. |
[15] | 汪信东,陈亮,张增艳. 抗小麦黄矮病相关蛋白激酶TiDPK1与BYDV外壳蛋白的互作[J]. 作物学报, 2013, 39(10): 1720-1726. |
|