欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2435-2442.doi: 10.3724/SP.J.1006.2022.11088

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

HvLBD19基因对大麦不定根发育的调控

郭宝健1,2(), 王爽1,2, 吕超1,2, 王菲菲1,2, 许如根1,2,*()   

  1. 1江苏省作物基因组学和分子育种重点实验室 / 植物功能基因组学教育部重点实验室 / 江苏省作物遗传生理重点实验室 江苏扬州 225009
    2扬州大学农学院 / 江苏省粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2021-10-12 接受日期:2022-02-25 出版日期:2022-10-12 网络出版日期:2022-03-22
  • 通讯作者: 许如根
  • 作者简介:第一作者联系方式: E-mail: bjguo@yzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(31771771);江苏省高等学校自然科学研究重大项目(19KJA560005);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-05);江苏高校优势学科建设工程项目资助

Regulation of adventitious root development by HvLBD19 gene in barley (Hordeum vulgare L.)

GUO Bao-Jian1,2(), WANG Shuang1,2, LYU Chao1,2, WANG Fei-Fei1,2, XU Ru-Gen1,2,*()   

  1. 1Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-10-12 Accepted:2022-02-25 Published:2022-10-12 Published online:2022-03-22
  • Contact: XU Ru-Gen
  • Supported by:
    National Natural Science Foundation of China(31771771);Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJA560005);China Agriculture Research System of MOF and MARA(CARS-05);and the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要:

植物LBD基因家族是植物特异的转录因子家族, 在调控植物生长发育和氮素代谢方面起到重要的作用。基因组共线性分析表明, 大麦(Hordeum vulgare L.) HvLBD19基因为水稻ARL1和玉米RTCS基因直系同源基因。基因时空表达分析结果表明, 该基因在不定根中表达丰度最高, 且受外源生长素诱导表达, 所编码蛋白定位于细胞核内。转基因功能验证结果表明, 苗期超表达株系相对于野生型不定根长度增长近1倍, 不定根数目增加40%。本研究初步明确了HvLBD19基因影响大麦不定根发育, 为进一步深入探究大麦HvLBD19基因调控不定根发育的分子机制提供了基础。

关键词: 大麦, 侧生器官边界域基因, 超表达, 不定根

Abstract:

LBD gene family is a plant specific transcription factor family, which plays an important role in regulating plant development and nitrogen metabolism. Micro-synteny analysis showed that barley HvLBD19 was an orthologous of maize RTCS and rice ARL1 gene. Temporal and spatial expression analysis revealed that this gene was most abundant in adventitious roots and was induced by exogenous auxin treatment, which encoded a protein located in the nucleus. Transgenic results indicated that the adventitious root length increased by nearly one time, and the number of adventitious roots increased by 40%. It was preliminarily confirmed that HvLBD19 gene controlled adventitious root development in barley and provided a foundation for further research on the molecular mechanism of HvLBD19 gene in regulating adventitious root development in barley.

Key words: barley, LATERAL ORGAN BOUNDARIES DOMAIN gene, overexpression, adventitious root

表1

本实验中用到的引物"

引物编号
Primer pairs ID
引物序列
Primer sequence (5′-3′)
内容
Content
P1 ATGACGGGACTGGGTTCGCC 编码区扩增
Coding sequence amplification
TTACGAGCGATTAAGGTAAG
P2 AGTTTCTGCGTCGCAAGTG 荧光定量
qRT-PCR
GAGCTTGGAGACGTTGCTG
P3 GGTCCATCCTAGCCTCACTC 内参基因HvActin扩增
Internal control of HvActin amplification
GATAACAGCAGTGGAGCGCT
P4 TCTCCCTTACCCATGATGAGCATGACGGGACTGGG 瞬时表达载体构建
Transient expression vector construction
CACGGGGGACTCTAGCGAGCGATTAAGGTAAGCATACGC
P5 CCCAAGCTTCTTGCATGCCTGCAGTGCAGCGTGACCCG Ubi启动子扩增
Ubi promoter amplification
CCCCCCGGGCTGCAGAAGTAACACCAAAC
P6 GACTAGTGAGCTCGAATTTCCCCGATC nos终止子扩增
nos terminator amplification
GCTCTAGAGATCTGATATCATCGATGAA
P7 CCCCCCGGGATGACGGGACTGGGTTCGCC 大麦超表达载体构建
Overexpression vector construction in barley
GACTAGTTTACGAGCGATTAAGGTAAG

图1

大麦HvLBD19基因过表达载体构建 A: 烟草瞬时表达载体构建; B: 大麦超表达载体构建。"

图2

大麦遗传转化程序 A: 幼穗; B: 幼胚愈伤诱导; C: 愈伤转化D: 幼苗再生。"

图3

LBD基因序列分析 A: HvLBD19、OsARL1和ZmRTCS蛋白序列比对; B: 玉米、大麦和水稻LBD基因的基因组区微共线性分析。"

图4

HvLBD19基因的表达分析 A: 苗期叶片(L)、不定根(AR)、根节(NR)和种子根(SR)中基因表达分析(表达量的高低以相度于叶片的表达量表示); B和C分别为NAA处理后不同时间点种子根和根节中基因表达分析(表达量以相度于0 h表达量表示)。"

图5

HvLBD19蛋白亚细胞定位 标尺为20 μm。"

图6

大麦遗传转化与阳性苗鉴定 A: 转基因株系PCR检测; P: 阳性质粒; G: Golden Promise; 数字: 不同的转基因株系; M: DNA分子量标准。B: 转基因株系潮霉素筛选。C: 阳性株系HvLBD19基因表达量分析, *和**表示转基因株系相对于野生型在0.01和0.05水平差异显著。"

图7

三叶一心期根系性状考察 A: 野生型和转基因株系苗期表型; B: 种子根长度; C: 种子根数目; D: 不定根长度; E: 不定根数目。"

[1] Shuai B, Reynagapeña C G, Springer P S. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol, 2002, 129: 747-761.
[2] Rubin G, Tohge T, Matsuda F, Saito K, Scheible W. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell, 2009, 21:3567-3584.
doi: 10.1105/tpc.109.067041
[3] Chanderbali A S, He F M, Soltis P S, Soltis D E. Out of the water: origin and diversification of the LBD gene family. Mol Biol Evol, 2015, 32: 1996-2000.
doi: 10.1093/molbev/msv080 pmid: 25839188
[4] Matsumura Y, Iwakawa H, Machida Y. Characterization of genes in the ASYMMETRIC LEAVES2/ LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. Plant J, 2009, 58: 525-537.
doi: 10.1111/j.1365-313X.2009.03797.x
[5] Zhang Y M, Zhang S Z, Zheng C C. Genomewide analysis of LATERAL ORGAN BOUNDARIES domain gene family in Zea mays. J Genet, 2014, 93: 79-91.
[6] Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell, 2007, 19: 118-130.
pmid: 17259263
[7] Guo B J, Wang J, Lin S, Tian Z, Zhou K, Luan H Y, Lyu C, Zhang X Z, Xu R G. A genome-wide analysis of the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) gene family in barley (Hordeum vulgare L.). J Zhejiang Univ Sci B, 2016, 17: 763-774.
doi: 10.1631/jzus.B1500277
[8] Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano M, Matsuoka M. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell, 2005, 17: 1387-1396.
doi: 10.1105/tpc.105.030981
[9] Liu H J, Wang S F, Yu X B, Yu J, He X W, Zhang S L, Shou H X, Wu P. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J, 2005, 43: 47-56.
doi: 10.1111/j.1365-313X.2005.02434.x
[10] Taramino G, Sauer M, Stauffer J L, Multani D, Niu X M, Sakai H, Hochholdinger F. The maize (Zea mays L.) RTCS gene encodes an LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J, 2007, 50: 11.
[11] Ori N, Eshed Y, Chuck G, Bowman J L, Hake S. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development, 2000, 127: 5523-5532.
doi: 10.1242/dev.127.24.5523 pmid: 11076771
[12] Semiarti E, Ueno Y, Tsukay H, Iwakawa H, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development, 2001, 128: 1771-1783.
doi: 10.1242/dev.128.10.1771 pmid: 11311158
[13] Byrne M E, Simorowski J, Martienssen R A. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development, 2002, 129: 1957-1965.
doi: 10.1242/dev.129.8.1957 pmid: 11934861
[14] Machida C, Nakagawa A, Kojima S, Takahashi H, Machida Y. The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis. Wires Dev Biol, 2015, 4: 655-671.
doi: 10.1002/wdev.196
[15] Oh S A, Park K S, Twell D, Park S K. The SIDECAR POLLEN gene encodes a microspore-specific LOB/AS2 domain protein required for the correct timing and orientation of asymmetric cell division. Plant J, 2010, 64: 839-50.
doi: 10.1111/j.1365-313X.2010.04374.x
[16] Albinsky D, Kusano M, Higuchi M, Hayashi N, Kobayashi M, Fukushima A, Mori M, Ichikawa T, Matsui K, Kuroda H, Horii Y, Tsumoto Y, Sakakibara H, Hirochika H, Matsui M, Saito K. Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism. Mol Plant, 2010, 3: 125-142.
doi: 10.1093/mp/ssp069 pmid: 20085895
[17] Chen Y M, Song W J, Xie X M, Wang Z H, Guan P F, Peng H R, Jiao Y N, Ni Z F, Sun Q X, Guo W L. A Collinearity- incorporating homology inference strategy for connecting emerging assemblies in Triticeae tribe as a pilot practice in the plant pangenomic era. Mol Plant, 2020, 13: 1694-1708.
doi: 10.1016/j.molp.2020.09.019
[18] Guo B J, Wei Y F, Xu R B, Lin S, Luan H Y, Lyu C, Zhang X Z, Song X Y, Xu R G. Genome-wide analysis of APETALA2/ ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L.). PLoS One, 2016, 11: e0161322.
[19] Jones H D, Shewry P R, eds. Transgenic wheat, barley and oats:barley transformation using agrobacterium-mediated techniques. In: Methods in Molecular Biology. New York: Humana Press, 2009. pp 137-147.
[20] Majer C, Xu C, Berendzen K W, Hochholdinger F. Molecular interactions of ROOTLESS CONCERNING CROWN AND SEMINAL ROOTS, a LOB domain protein regulating shoot- borne root initiation in maize (Zea mays L.). Philos Trans R Soc Lond B Biol Sci, 2012, 367: 1542-1551.
doi: 10.1098/rstb.2011.0238
[21] Shao Y, Zhou H Z, Wu Y, Zhang H, Lin J, Jiang X Y, He Q J, Zhu J S, Li Y G, Yu H, Mao C Z. OsSPL3, an SBP-domain protein, regulates crown root development in rice. Plant Cell, 2019, 31: 1257-1275.
doi: 10.1105/tpc.19.00038
[22] 张焕欣, 董春娟, 李福凯, 王红飞, 尚庆茂. 植物不定根发生机理的研究进展. 西北植物学报, 2017, 37: 1457-1464.
Zhang H X, Dong C J, Li F K, Wang H F, Shang Q M. Progress on the regulatory mechanism of adventitious rooting. Acta Bot Boreal-Occident Sin, 2017, 37: 1457-1464. (in Chinese with English abstract)
[1] 郭楠楠, 刘天策, 史硕, 胡心亭, 牛亚丹, 李亮. 长链非编码RNA (LncRNA)在印度梨形孢促进大麦根部生长发育中的调控作用[J]. 作物学报, 2022, 48(7): 1625-1634.
[2] 贺军与, 钟伟, 陈云琼, 王卫斌, 熊静蕾, 蒋亚丽, 施辉蒙, 陈升位. 大麦籽粒发育进程中7种黄酮类化合物的积累特性分析[J]. 作物学报, 2021, 47(8): 1624-1630.
[3] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[4] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[5] 徐婷婷, 汪巧玲, 邹淑琼, 狄佳春, 杨欣, 朱银, 赵涵, 颜伟. 基于高通量测序的大麦InDel标记开发及应用[J]. 作物学报, 2020, 46(9): 1340-1350.
[6] 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461.
[7] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[8] 时丽洁,蒋枞璁,王方梅,杨平,冯宗云. 大麦蛋白质二硫键异构酶基因家族的鉴定与表达分析[J]. 作物学报, 2019, 45(9): 1365-1374.
[9] 胡德益,蔡露,陈光登,张锡洲,刘春吉. 不同磷水平下大麦分蘖期磷效率相关性状QTL定位分析[J]. 作物学报, 2017, 43(12): 1746-1759.
[10] 张利莎,董国清,扎桑,卓嘎,王德良,谷方红,袁兴淼,张京,郭刚刚. 基于EST-SSR和SNP标记的大麦麦芽纯度检测[J]. 作物学报, 2015, 41(08): 1147-1154.
[11] 司二静,张宇,汪军成,孟亚雄,李葆春,马小乐,尚勋武,王化俊. 大麦农艺性状与SSR标记的关联分析[J]. 作物学报, 2015, 41(07): 1064-1072.
[12] 陈坤梅,李宏伟,林凡云,陈耀锋,李滨,郑琪,李振声. 利用病毒介导基因沉默方法研究小麦抗光氧化相关基因[J]. 作物学报, 2014, 40(11): 1905-1913.
[13] 姜晓东,郭刚刚,张京. Amy6-4基因遗传多样性及其与α-淀粉酶活性的关联分析[J]. 作物学报, 2014, 40(02): 205-213.
[14] 赖勇,孟亚雄,王晋,范贵强,司二静,王鹏喜,李葆春,马小乐,杨轲,尚勋武,王化俊. 大麦遗传多样性及连锁不平衡分析[J]. 作物学报, 2013, 39(12): 2154-2161.
[15] 汪信东,陈亮,张增艳. 抗小麦黄矮病相关蛋白激酶TiDPK1与BYDV外壳蛋白的互作[J]. 作物学报, 2013, 39(10): 1720-1726.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄策;王天铎. 水稻群体物质生产过程的计算机模拟[J]. 作物学报, 1986, (01): 1 -8 .
[2] 张文静;胡宏标;陈兵林;王友华;周治国. 棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系[J]. 作物学报, 2008, 34(05): 859 -869 .
[3] 张鹏;张海洋;郭旺珍;郑永战;魏利斌;张天真. 以SRAP和EST-SSR标记分析芝麻种质资源的遗传多样性[J]. 作物学报, 2007, 33(10): 1696 -1702 .
[4] 何亮;李富华;沙莉娜;付凤玲;李晚忱. 玉米2C型丝氨酸/苏氨酸蛋白磷酸酶(PP2C)活性与耐旱性的关系[J]. 作物学报, 2008, 34(05): 899 -903 .
[5] . 小麦穗和芒表面积的估测[J]. 作物学报, 1985, 11(02): 138 .
[6] 常丽英;顾东祥;张文宇;杨杰;曹卫星;朱艳. 水稻叶片伸长过程的模拟模型[J]. 作物学报, 2008, 34(02): 311 -317 .
[7] 韩湘玲;刘巽浩;孔扬庄. 黄淮海地区—熟与两熟制生产力的研究[J]. 作物学报, 1986, 12(02): 109 -116 .
[8] 宁堂原;李增嘉;焦念元;赵春;申加祥;张光辉;王浩. 不同熟期玉米品种春夏套作对籽粒淀粉含量及糊化特性的影响[J]. 作物学报, 2005, 31(01): 77 -82 .
[9] 梅明华;李泽炳. 粳稻品种中掩盖光敏核不育性的主效恢复基因分析[J]. 作物学报, 1995, 21(01): 95 -101 .
[10] 谢黎虹;杨仕华;陈能;段彬伍;朱智伟;廖西元. 不同生态条件下籼稻米饭质地和淀粉RVA谱的特性[J]. 作物学报, 2006, 32(10): 1479 -1484 .