欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (12): 2154-2161.doi: 10.3724/SP.J.1006.2013.02154

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大麦遗传多样性及连锁不平衡分析

赖勇1,2,**,孟亚雄1,2,**,王晋1,2,范贵强1,2,司二静1,2,王鹏喜1,2,李葆春1,3,马小乐2,杨轲1,2,尚勋武2,王化俊1,2,*   

  1. 1甘肃省作物遗传改良与种质创新重点实验室 / 甘肃省干旱生境作物学重点实验室,甘肃兰州730070;2甘肃农业大学农学院,甘肃兰州 730070;
    3甘肃农业大学生命科学技术学院,甘肃兰州730070
  • 收稿日期:2013-05-08 修回日期:2013-07-26 出版日期:2013-12-12 网络出版日期:2013-09-29
  • 通讯作者: 王化俊,E-mail: whuajun@yahoo.com
  • 基金资助:

    本研究由国家自然科学基金项目(31171558)和国家现代农业产业技术体系建设专项(CARS-05)项目资助。

Genetic Diversity and Linkage Disequilibrium Analysis in Barley

LAI Yong1,2,**,MENG Ya-Xiong1,2,**,WANG Jin1,2,FAN Gui-Qiang1,2,SI Er-Jing1,2,WANG Peng-Xi1,2,LI Bao-Chun3,MA Xiao-Le2,YANG Ke1,2,SHANG Xu-Wu2,WANG Hua-Jun1,2,*   

  1. 1 Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement / Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China; 2 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; 3 College of Life Sciences and Technology of Gansu Agricultural University, Lanzhou 730070, China
  • Received:2013-05-08 Revised:2013-07-26 Published:2013-12-12 Published online:2013-09-29
  • Contact: 王化俊,E-mail: whuajun@yahoo.com

摘要:

为了合理评价引进种质资源,为大麦基因发掘及育种组合配置提供依据,选用分布于全基因组的64SSR标记,对221份大麦材料进行了基因型分析。共检测到192个等位变异,变幅为2~7个;基因频率变异范围为0.0090~0.9729,平均0.3333;全部位点的基因多样性变化范围在0.0528~0.7807,平均0.4813;多态性信息含量(PIC)变异范围在0.0514~0.7464,平均0.4113。供试材料间遗传相似系数变幅为0.4844~0.9792,平均0.7023221份材料被划分成两大群7个亚群,国内地方品种与1份北京品种为一大群,国内育种品种与所有国外引进品种为另一群。遗传结构分析与聚类结果基本一致,两大类群间的遗传距离为0.3358,且第二大群多样性比第一大群丰富。2016SSR位点成对组合中,不论共线性组合还是非共线性组合,都存在一定程度的连锁不平衡(LD)D′统计概率(P<0.01)支持的LD成对位点830个,占全部位点组合的41.2%D′平均值为0.4,整体LD水平较高。栽培品种的LD水平高于地方品种,且现代遗传改良的目标性状集中于2H4H6H7H染色体。

关键词: 大麦, SSR, 遗传多样性, 连锁不平衡, 关联分析

Abstract:

The objective of this study was to provide a suitable evaluation for introduced germplasm resources and useful information for associate analysis and parental combinations in barley (Hordeum valgare L.). A total of 192 alleles were detected by 64 SSR markers on chromosomes 1H to 7H in 221 barley accessions with 2–7 alleles per locus. The allelic frequency ranged from 0.0090 to 0.9729, with the mean of 0.3333. The gene diversity was from 0.0528 to 0.7807, averagely 0.4813. The polymorphism information content (PIC) value ranged from 0.0514 to 0.7464 with the mean of 0.4113. The genetic similarity of the 221 accessions ranged from 0.4844 to 0.9792 with the mean of 0.7023. All accessions were clustered into two major groups and seven subgroups. Most landraces or developed varieties fell into the same major group. Genetic structure analysis revealed two subpopulations of these accessions, with consistence to the clustering analysis. Genetic distance between the two subpopulations was 0.3358, and the second subpopulation had richer diversity than the first one. There was linkage disequilibrium (LD) among linked loci and unlinked loci pairs, and 830 out of 2016 loci pairs (41.2%) had significant LD (P < 0.01) with D′ average value of 0.4. The LD level of developed variety was higher than that of landraces. Target traits of developed varieties were mainly distributed on chromosomes 2H, 4H, 6H, and 7H.

Key words: Barley, SSR, Genetic diversity, Linkage disequilibrium, Association analysis

[1]Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063–1064



[2]Bhagwat A A, Cregan P B, Akkaya M S. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics, 1992, 132: 1131–1139



[3]Saghai-Maroof M A, Biyashev R M, Yang G P, Zhang Q, Allard R W. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA, 1994, 91: 5466–5470



[4]Weber J L. Informativeness of human (dC-dA)n.(dG-dT)n polymorphism. Genomics, 1990, 7: 524–530



[5]Wang Z, Weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeats. Theor Appl Genet, 1994, 88: 1–6



[6]Matus I A, Hayes P M. Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome, 2002, 45: 1095–1106



[7]Brantestam A K, Bothmer R, Dayteg C, Rashal I, Tuvesson S, Weibull J. Genetic diversity changes and relationships in spring barley (Hordeum vulgare L.) germplasm of Nordic and Baltic areas as shown by SSR markers. Genet Resour Crop Evol, 2007, 54: 749–758



[8]Sun D F, Ren W B, Sun G L, Peng J H. Molecular diversity and association mapping of quantitative traits in Tibetan wild and worldwide originated barley (Hordeum vulgare L.) germplasm. Euphytica, 2011, 178: 31–43



[9]Teulat B, Borries C, This D. New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustrnent in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet, 2001, 103: 161–170



[10]Korff M, Wang H, Léon J, Pillen K. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet, 2006, 112: 1221–1231



[11]Shahinnia F, Druka A, Franckowiak J, Morgante M, Waugh R, Stein N. High resolution mapping of dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H. Theor Appl Genet, 2012, 124: 373–384



[12]Flint-Garcia S A, Thornsberry J M, Buckler I V. Structure of linkage disequilibrium in plants. Ann Rev Plant Biol, 2003, 54: 357–374



[13]Zondervan K T, Cardon L R. The complex interplay among factors that influence allelic association. Nat Rev Genet, 2004, 5: 89–100



[14]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol Biol, 2005, 57: 461–485



[15]Maccaferri M, Sanguineti M C, Enrico N, Roberto T. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed, 2005, 15: 271–289



[16]Flint-Garcia S A, Thuillet A C, Yu J M, Pressoir G, Romero S M, Sharon E, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler IV E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054–1064



[17]Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961–967



[18]Kraakman A T W, Martnez F, Mussiraliev B, Eeuwijk F A, Niks R E. Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed, 2006, 17: 41–58



[19]Katherine S C, Joanne R, Peter L, Wayne P. Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics, 2006, 172: 557–567



[20]Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127



[21]Maccaferri M, Sanguineti M C, Noli E, Tuberosa R. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed, 2005, 15: 271–290



[22]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611–2620



[23]Guo H, Wei Y M, Chen F, Zheng Y L. Genetic diversity of Hordeum bogdanii wilensky native to Xinjiang, China, based on STS_PCR markers. Acta Bot Sin, 2002, 44: 1327–1332



[24]Shi Y-T(施永泰), Bian H-W(边红武), Han N(韩凝), Pan J-W(潘建伟), Tong W-X(童微星), Zhu M-Y(朱睦元.). Genetic variation analysis by RAPD of some barley cultivars in China. Acta Agron Sin(作物学报), 2004, 30(3): 258–265 (in Chinese with English abstract)



[25]Zhang C-H(张赤红), Zhang J(张京). Genetic diversity assessment of barley germplasm resources using SSR markers. J Triticeae Crops(麦类作物学报), 2008, 28(2): 214–219 (in Chinese with English abstract)



[26]Liu Z-M(刘志敏), Jin N(金能), Lü C(吕超), Huang Z-L(黄祖六), Xu R-G(许如根). Genetic diversity analysis of barley varieties by SSR. J Triticeae Crops(麦类作物学报), 2011, 31(5): 839–846 (in Chinese with English abstract)



[27]Maroof M A S, Biyashev R M, Yang G P, Zhang Q, Allard R W. Extraordinarily polymorphic microsatellite DNA in barley, species diversity, chromosomal locations and population dynamics. Proc Natl Acad Sci USA, 1994, 91: 5466–5470



[28]Struss D, Plieske J. The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet, 1998, 97: 308–315



[29]Hansen M, Kraft T, Ganestam S, Sall T, Nilsson N O. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res, 2001, 77: 61–66



[30]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler IV E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289



[31]Stracke S, Perovic D, Stein N, Thiel T, Graner A. Linkage disequilibrium in barley. In: 11th Molecular Markers Symposium of the GPZ, 2003. http://meetings.ipk-gater-sleben.de/moma2003/index.php.



[32]Kraakman A T W, Niks R E, Van den Berg P M M M, Stam P, Van Eeuwijk F A. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004, 168: 435–446

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[5] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[8] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[9] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[10] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[11] 贺军与, 钟伟, 陈云琼, 王卫斌, 熊静蕾, 蒋亚丽, 施辉蒙, 陈升位. 大麦籽粒发育进程中7种黄酮类化合物的积累特性分析[J]. 作物学报, 2021, 47(8): 1624-1630.
[12] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[13] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[14] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[15] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!