欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2427-2434.doi: 10.3724/SP.J.1006.2022.13065

• 综述 •    下一篇

发展西南玉米现代生态育种之我见

潘光堂(), 杨克诚, 高世斌   

  1. 西南作物基因资源发掘与利用国家重点实验室 / 四川农业大学玉米研究所, 四川成都611130
  • 收稿日期:2021-11-15 接受日期:2022-04-24 出版日期:2022-10-12 网络出版日期:2022-05-07
  • 通讯作者: 潘光堂
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02);四川省科技支撑计划项目(2016NYZ029);四川省科技支撑计划项目(2021YFFZ0017)

Insights on developing modern corn ecological breeding in southwest China

PAN Guang-Tang(), YANG Ke-Cheng, GAO Shi-Bin   

  1. National Key Laboratory for the Exploration and Utilization of Genetic Resources of Crops in Southwest China / Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2021-11-15 Accepted:2022-04-24 Published:2022-10-12 Published online:2022-05-07
  • Contact: PAN Guang-Tang
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-02);Sichuan Science and Technology Support Project(2016NYZ029);Sichuan Science and Technology Support Project(2021YFFZ0017)

摘要:

基于基因型与环境互作(G×E)原理, 围绕西南玉米育种生态分区特征、国民经济发展需求、玉米产业发展趋势、育种目标需求变化和育种技术体系创新等多个维度, 本文着重对西南玉米生态育种在新时期的内涵进行了系统总结与阐释, 进一步凝练出以“充分重视和利用(G×E)互作”为核心、以“育种目标产业化、品种类型多元化、品种鉴选特异化、品种布局区域化、品种推广集团化、品种栽培模式化”为主要内容的西南玉米区“现代生态育种”的发展理念, 系统提出选育以“稳产高产、资源高效、环境友好、优质安全、易制种、宜机收”为特征的“低风险、高效新杂交种”新时期育种目标, 集成完善了以“提高新品种的抗病抗逆特性和耐密性为路径, 优良特异育种资源的精细发掘与精准鉴定为前提, 适应不同生态区域育种急需的不同杂优类群优良骨干自交系、特别是热带种质类群优良自交系的培育为关键, 新杂交组合在特定生态区域多年多点生物与非生物强胁迫鉴定选择为重点, 选育和推广特定生态区域资源高效利用、环境友好和玉米生产可持续发展的稳产高产高效新品种为保证”的育种技术体系, 推动西南玉米生产与产业持续健康发展。

关键词: 玉米, 西南区, 生态育种, 现代生态育种

Abstract:

Based on the principle of interaction between genotype and environment (G × E), we analyze the ecological zoning characteristics of maize breeding in southwest China, the development demand of national economy, the development trend of maize industry, the change of breeding target demand, the innovation of breeding technology system and so on. We focus on the systematic summary and explanation of the connotation of maize ecological breeding in southwest China in the new period. Further condensed with “full attention and utilization of (G × E) interaction” as the core, “industrialization of breeding objectives, diversification of variety types, special identification of variety selection, regionalization of variety layout, and collectivization of variety promotion.” the development concept of “modern ecological breeding” in Southwest corn region with the main content of “model of variety cultivation” systematically put forward the breeding goal of “low risk and high efficiency new hybrid” in the new period, which is characterized by “stable yield, high efficiency, environment-friendly, high quality and safety, easy seed production and harvest by machine ”. In order to promote the sustainable and healthy development of maize production and industry in southwest China, we proposed the following aspects should be emphasized in breeding technology system: 1) the path is to improve disease resistance and stress resistance of new varieties based on the premise of fine exploration and accurate identification of excellent and specific breeding resources; 2) the key is to utilize different heterotic groups, especially the cultivation of excellent inbred lines of tropical germplasm groups urgently needed in different ecological regions, and the identification of new hybrid combinations in specific ecological regions under multi-point biotic and abiotic strong stress for multi-year; 3) the guarantee is to popularize new varieties with stable yield, high yield and high efficiency guaranteed by efficient utilization of resources in specific ecological regions, environment-friendly and sustainable development of maize production.

Key words: maize, southwest China, traditional ecological breeding, modern ecological breeding

图1

西南玉米育种种质杂优类群的三层级划分"

[1] 马育华. 植物育种的数量遗传学基础. 南京: 江苏科学技术出版社, 1982. pp 18, 141-142.
Ma Y H. The Quantitative Genetic Basis of Crop Breeding. Nanjing: Jiangsu Science and Technology Press, 1982. pp 18, 141-142. (in Chinese)
[2] 荣廷昭, 潘光堂, 黄玉碧. 数量遗传学. 北京: 中国科学技术出版社, 2003. pp 72, 89-106.
Rong T Z, Pang G T, Huang Y B. Quantitative Genetics. Beijing: China Science and Technology Press, 2003. pp 72, 89-106. (in Chinese)
[3] 王建康. 数量遗传学. 北京: 科学出版社, 2017. pp 219-223, 236-238.
Wang J K. Quantitative Genetics. Beijing: Science Press, 2017. pp 219-223, 236-238 (in chinese).
[4] Hallauer A R, Carena M J, Miranda J B. 玉米育种的数量遗传学. 陈泽辉, 刘文欣, 雍洪军, 刘红军, 陈邵江, 译. 北京: 科学出版社, 2019. pp 77-106, 183-199, 279-306, 351-385, 428-479.
Hallauer A R, Carena M J, Miranda J B. Quantitative Genetics in Maize Breeding. In: Chen Z H, Liu W X, Yong H J, Liu H J, Chen S J, trans. Beijing: Science Press, 2019. pp 77-106, 183-199, 279-306, 351-385, 428-479. (in Chinese with English abstract)
[5] 荣廷昭, 李晚忱, 杨克诚, 张彪, 张述宽, 唐洪军, 番兴明. 西南生态区玉米育种. 北京: 中国农业出版社, 2003. pp 18-36, 84-95, 107-126, 134-151, 187-214, 260-264.
Rong T Z, Li W C, Yang K C, Zhang B, Zhang S K, Tang H J, Fan X M. Corn Breeding in Southwest in China. Beijing: China Agriculture Press, 2003. pp 18-36, 84-95, 107-126, 134-151, 187-214, 260-264. (in Chinese)
[6] 刘纪麟. 玉米育种学. 北京: 中国农业出版社(第2版), 2000, pp 291-317.
Liu J L. Corn Breeding. Beijing: China Agriculture Press, 2nd edn, 2003. pp 291-317.
[7] 农业部种植业管理司. 中国玉米品质区划及产业布局. 北京: 中国农业出版社, 2004. pp 321-361.
Department of Crop Management, Ministry of Agriculture. China’s Corn Quality Zoning and Industrial Layout. Beijing: China Agriculture Press, 2004. pp 321-361. (in Chinese)
[8] 汪黎明, 王庆成, 孟昭东. 中国玉米品种及其系谱. 上海: 上海科学技术出版社, 2010. pp 10, 542-712.
Wang L M, Wang Q C, Meng Z D. China’s Corn Varieties and Their Genealogy. Shanghai: Shanghai Scientific and Technical Pubishers, 2010. pp 10, 542-712. (in Chinese)
[9] Eberhart S A, Russell W A. Stability parameters for comparing varieties. Crop Sci, 1966, 6: 36-40.
doi: 10.2135/cropsci1966.0011183X000600010011x
[10] 陈雪求, 李殿申, 何文安, 王春生, 韩玉珍. 关于作物生态育种涉及的若干问题的探讨. 吉林农业大学学报, 1999, 21(2): 99-102.
Chen X Q, Li D S, He W A, Wang C S, Han Y Z. The discussion of several problems in plant ecological breeding. J Jilin Agric Univ, 1999, 21(2): 99-102. (in Chinese with English abstract)
[11] 荣廷昭, 李晚忱, 潘光堂. 新世纪初发展我国玉米遗传育种技术的思考. 玉米科学. 2003, 11(增刊2): 42-53.
Rong T Z, Li W C, Pan G T. Suggestion on development of science and technology in maize genetics and breeding at the beginning of 21st century. J Maize Sci, 2003, 11(S2): 42-53. (in Chinese with English abstract)
[12] 杨克诚, 苟才明, 荣廷昭, 潘光堂. 西南地区玉米育种现状及发展对策. 玉米科学, 2008, 16(3): 8-11.
Yang K C, Gou C M, Rong T Z, Pang G T. Discussion present situation of maize breeding and countermeasure in southwest region. J Maize Sci, 2008, 16(3): 8-11. (in Chinese with English abstract)
[13] 潘光堂, 杨克诚. 我国西南玉米育种面临的挑战及相应对策探讨. 作物学报, 2012, 38: 1141-1147.
Pan G T, Yang K C. Facing to challenges and corresponding strategies for maize breeding in southwestern region of China. Acta Agron Sin, 2012, 38: 1141-1147. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01141
[14] 李高科, 潘光堂. 西南玉米种质利用现状及研究进展. 玉米科学, 2005, 21(2): 3-7.
Li G K, Pan G T. The utilization present situation and study advances of the germplasm in southwest maize zone. J Maize Sci, 2005, 13(2): 3-7. (in Chinese with English abstract)
[15] 胡瑞发, Meng Erika C H, 张世煌, 石晓华. 采用参与式方法评估中国玉米研究的优先序. 中国农业科学, 2004, 37: 781-787.
Hu R F, Meng Erika C H, Zhang S H, Shi X H. Prioritization for maize research and development in China. Sci Agric Sin, 2004, 37: 781-787. (in Chinese with English abstract)
[16] 李芦江, 陈文生, 张敏, 兰海, 潘光堂, 杨克诚. 240份玉米自交系纹枯病抗性鉴定与评价. 植物遗传资源学报, 2014, 15: 1113-1119.
Li L J, Chen W S, Zhang M, Lan H, Pan G T, Yang K C. Identification and evolution of 240 maize inbred lines for resistant to banded leaf and sheath blight. J Plant Genet Res, 2014, 15: 1113-1119.. (in Chinese with English abstract)
[17] 李辉, 向葵, 张志明, 袁广胜, 潘光堂. 玉米穗腐病抗性机制及抗病育种研究进展. 玉米科学, 2019, 27(4): 167-174.
Li H, Xiang K, Zhang Z M, Yuan G S, Pan G T. Research progress on ear rot resistant mechanism and resistant breeding in maize. J Maize Sci, 2019, 27(4): 167-174. (in Chinese with English abstract)
[18] 张吉海, 高世斌, 杨克诚, 张志明, 林海建, 黄宁, 郑溟, 徐克成, 陈义轩, 潘光堂. 玉米耐低磷种质资源的筛选与鉴定. 植物遗传资源学报, 2008, 9: 335-339.
Zhang J H, Gao S B, Yang K C, Zhang Z M, Lin H J, Huang N, Zheng M, Xu K C, Chen Y X, Pan G T. Screening and identification for tolerance to low phosphorus stress of maize germplasm resources. J P1ant Genet Res, 2008, 9: 335-339. (in Chinese with English abstract)
[19] Zhang L T, Li J, Rong T Z, Gao S B, Wu F K, Xu J, Li M L, Cao M J, Wang J, Hu E L, Liu Y X, Lu Y L. Large-scale screening maize germplasm for low-phosphorus tolerance using multiple selection criteria. Euphytica, 2014, 197: 435-446.
doi: 10.1007/s10681-014-1079-3
[20] Zhang Z M, Jin F, Wang C, Luo J, Lin H J, Xiang K, Liu L, Zhao M J, Zhang Y S, Ding H P, Zhou S F, Shen Y O, Pan G T. Difference between Pb and Cd accumulation in 19 elite maize inbred lines and application prospects. J Biomed Biotechnol, 2012, ID271485.
[21] 赵雄伟, 金枫, 曹艳花, 李芦江, 张永中, 张志明, 沈亚欧, 林海建, 潘光堂. 玉米重金属铅Pb2+含量的配合力分析与育种对策. 植物遗传资源学报, 2015, 16: 29-36.
Zhao X W, Jin F, Cao Y H, Li L J, Zhang Y Z, Zhang Z M, Shen Y O, Lin H J, Pan G T. Combining ability analysis for Pb2+ content in maize and corresponding breeding strategy. J P1ant Genet Res, 2015, 16: 29-36. (in Chinese with English abstract)
[22] Lu Y L, Yan J B, Claudia Guimarães T, Taba S, Ha Z F, Gao S B, Chen S J, Li J S, Zhang S H, Vivek S B, Magorokosho C, Mugo S, Makumbi D, Parentoni S N, Shah T, Rong T Z, Crouch J H, Xu Y B. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet, 2009, 120: 93-115.
doi: 10.1007/s00122-009-1162-7
[23] 潘光堂, 杨克诚, 李晚忱, 黄玉碧, 高世斌, 兰海, 李芦江, 曹墨菊, 唐祈林, 付凤玲, 周树峰, 吴元奇, 卢艳丽, 林海建, 沈亚欧, 荣廷昭. 我国西南玉米杂种优势群及其杂优模式研究与应用的回顾. 玉米科学. 2020, 28(1): 1-8.
Pan G T, Yang K C, Li W C, Huang Y B, Gao S B, Lan H, Cao M J, Tang Q L, Fu F L, Zhou S F, Wu Y Q, Lu Y L, Lin H J, Sheng Y O, Rong T Z. A review of the research and application of heterotic groups and patterns of maize breeding in southwest China. J Maize Sci, 2020, 28(1): 1-8. (in Chinese with English abstract)
[24] 梁燕, 高世斌, 谭登峰, 李建, 张志明, 潘光堂. 玉米温热杂交种光周期敏感相关性状的遗传模型研究. 中国农业科学, 2008, 41: 3326-3335.
Liang Y, Gao S B, Tan D F, Li J, Zhang Z M, Pan G T. Study on genetic model of traits related to photoperiod sensitive phenomenon of Temperate × Tropical crosses in maize. Sci Agric Sin, 2008, 41: 3326-3335. (in Chinese with English abstract)
[25] Mu G Q, Liang Y, Zhang Z M, Wu Y Q, Liu S J, Peng H, Zhang S Z, Pan G T. Mapping quantitative trait loci associated with photoperiod sensitivity in maize (Zea mays L.). J Integr Agric, 2009, 8(1): 24-30.
[26] Zhang X, Zhang H, Li L J, Lan H, Ren Z Y, Liu D, Wu L, Liu H L, Jaqueth J, Li B L, Pang G T, Gao S B. Characterizing the population structure and genetic diversity of maize breeding germplasm in southwest China using genome-wide SNP markers. BMC Genomics, 2016, 17: 697.
[27] Luo B W, Ma P, Nie Z, Zhang X, He X, Ding X, Feng X, Lu Q X, Ren Z Y, Lin H J, Wu Y Q, Shen Y O, Zhang S Z, Wu L, Liu D, Pan G T, Rong T Z, Gao S B. Combining metabolite profiling with genome-wide association study to reveal response mechanisms of Zea mays seedlings under low-phosphorus conditions. Plant J, 2019, 97: 947-969.
doi: 10.1111/tpj.14160
[28] 杨爱国, 张世煌, 李明顺, 荣廷昭, 潘光堂. CIMMYT和我国玉米种质群体的配合力及杂种优势分析. 作物学报, 2006, 32: 1329-1337. (in Chinese with English abstract)
Yang A G, Zhang S H, Li M S, Rong T Z, Pan G T. Combining ability and heterosis of 14 CIMMYT and 13 domestic maize populations in an NCII mating design. Acta Agron Sin, 2006, 32: 1329-1337.
[29] 邬成, 陈泽辉, 祝云芳, 王安贵, 郭向阳, 李娟. 玉米Tuxpeno和Suwan种质改良系农艺性状的分析. 贵州农业科学, 2010, 38(7): 1-4.
Wu C, Chen Z H, Zhu Y F, Wang A G, Guo X Y, Li J. Analysis of agronomic characters of corn Tuxpeno and Suwan germplasm improved lines. Guizhou Agric Sci, 2010, 38(7): 1-4. (in Chinese with English abstract)
[30] 陈泽辉, 祝云芳, 王安贵, 郭向阳, 赵丽, 胡兴. 玉米Tuxpeno-Reid和Suwan-Lancaster合成群体相互轮回选择效果及杂种优势研究. 玉米科学, 2013, 21(4): 1-5.
Chen Z H, Zhu Y F, Wang A G, Guo X Y, Zhao L, Hu X. Two Maize populations of Tuxpeno-Reid and Suwan-Lancaster by reciprocal selection and the heterosis. J Maize Sci, 2013, 21(4): 1-5. (in Chinese with English abstract)
[1] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167.
[2] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[3] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883.
[4] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006.
[5] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[6] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
[7] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[11] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[12] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[13] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[3] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[4] 杨燕;赵献林;张勇;陈新民;何中虎;于卓;夏兰琴. 四个小麦抗穗发芽分子抗性标记有效性的验证与评价[J]. 作物学报, 2008, 34(01): 17 -24 .
[5] 徐正进;陈温福;马殿荣;吕英娜;周淑清;刘丽霞. 稻谷粒形与稻米主要品质性状的关系[J]. 作物学报, 2004, 30(09): 894 -900 .
[6] 叶小利;李学刚;李加纳. 甘蓝型油菜种皮黑色素形成机理的研究[J]. 作物学报, 2002, 28(05): 638 -643 .
[7] 吴征彬;陈鹏;杨业华;徐裕森;谢红彬. 不同类型抗虫陆地棉对红铃虫的抗性研究[J]. 作物学报, 2005, 31(01): 53 -57 .
[8] 孟金陵;刘后利. 连续自交对甘蓝型油菜(Brassica napus L.)胚胎发育的影响[J]. 作物学报, 1986, 12(02): 79 -86 .
[9] 佴军;潘学彪; 陈宗祥;张亚芳. 水稻恢复系选育的轮回选择法及其应用效果研究[J]. 作物学报, 2004, 30(12): 1199 -1203 .
[10] 陈利;张正圣;胡美纯;王威;张建;刘大军;郑靓;郑风敏;马靖. 陆地棉遗传图谱构建及产量和纤维品质性状QTL定位[J]. 作物学报, 2008, 34(07): 1199 -1205 .