欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1258-1264.doi: 10.3724/SP.J.1006.2010.01258

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻黑条矮缩病抗性资源的筛选和抗性QTL 的定位

王宝祥1,江玲1,**,陈亮明1,卢百关2,王琦1,黎光泉1,樊继伟2,程遐年1,翟虎渠3,徐大勇2,万建民1,3,*   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室/江苏省植物基因工程技术研究中心,江苏南京210095;2江苏徐淮地区连云港农业科学研究所,江苏连云港222006;3中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2010-03-04 修回日期:2010-04-22 出版日期:2010-08-12 网络出版日期:2010-06-11
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2007AA10Z191,2006AA100101,2006AA10Z1A5),江苏省高技术招标项目(BE2009301-3,BE2008354)和江苏省三项工程项目资助.

Screening of Rice Resources against Rice Black-Streaked Dwarf Virus and Mapping of Resistant QTL

WANG Bao-Xiang1,JIANG Ling1**,CHEN Liang-Ming1,LU Bai-Guan2,WANG Qi1,LI Guang-Quan1,FAN Ji-Wei2,CHENG Xia-Nian1,ZHAI Hu-Qu3,XU Da-Yong2,WAN Jian-Min13*   

  1. 1 State Key Laboratory of Crop Genetics and Germplasm Enhancement / Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Lianyungang Agricultural Science of Xuhuai Area , Lianyungang 222006, China; 3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2010-03-04 Revised:2010-04-22 Published:2010-08-12 Published online:2010-06-11

摘要: 通过水稻黑条矮缩病的田间鉴定发现,分蘖盛期的病状最为显著,是病症观察的最佳时期。对江苏省311份粳稻品种进行重病区田间鉴定试验,未发现对黑条矮缩病毒(RBSDV)免疫的品种。江苏省目前正在推广的24个主栽水稻品种发病率在10.0%~30.0%之间,曾推广的287份粳稻品种中,71.5%的品种发病率在10.0%~29.0%之间,其余品种发病率在29%以上。来源于日本的粳稻品种Koshihikari的黑条矮缩病发病率相对较低,籼稻高产品种桂朝2号为感病品种。利用Koshihikari/桂朝2号RILs群体进行抗RBSDV的基因定位,结果在第3染色体上标记RM7–RM5748之间检测到1个抗黑条矮缩病的QTL,来自Koshihikari的等位基因增强了水稻黑条矮缩病的抗性,携带抗性位点的家系明显提高了对RBSDV的抗性。本研究结果将为研究水稻黑条矮缩病和水稻抗黑条矮缩病分子育种提供重要信息。

关键词: 水稻, 黑条矮缩病, 病状调查, 抗源筛选, QTL定位

Abstract: Rice black-streaked dwarf virus(RBSDV)disease become epidemic in Jiangsu and Zhejiang provinces. To screen resistant germplasms and discover new resistance genes/QTLs against RBSDV, we evaluated the resistance to RBSDV in 311 japonica cultivars in field test. The results showed that no cultivar was immune to RBSDV. The disease rate of 24 main japonica cultivars grown in Jiangsu province at present was 10.0%–29.0% and that of 71.5% cultivars in 287 japonicapopularized in Jiangsu beforewas between 10.0% and 30.0%. Furthermore, quantitative trait loci (QTL) analysis was conducted by using 162 recombinant inbred lines (RILs), which derived from a cross between Guichao 2, a susceptible indica variety, and Koshihikari, a japonica variety with resistance to RBSDV. RBSDV resistances were evaluated using natural infection methods by scoring the disease rating. One putative QTL (qRBSDV3) controlling RBSDV resistance was mapped between the marker RM7 and RM5748 on chromosome 3, which explained 17.1% of the total phenotypic variation with LOD score of 5.4. The positive resistant effect contributed from Koshihikari. Further analysis revealed that the lines harboring the alleles of qRBSDV3 exhibited significantly increased resistance to RBSDV. The results should be very useful for breeding new RBSDV-resistant cultivars by marker-assisted selection (MAS). cultivars

Key words: Rice, Rice black-streaked dwarf virus, Screening resistant germplasm, QTL mapping

[1]         Milne R G, Lovisolo O. Maize rough dwarf and related viruses. Adv Virus Res, 1977, 21: 267–341

[2]         Azuhata F, Uyeda I, Kimura I, Shikata E. Close similarity between genome structures of rice black-streaked dwarf and maize rough dwarf viruses. J Gen Virol, 1993, 74: 1227–1232

[3]         Li A-H(李爱宏), Dai Z-Y(戴正元), Ji H-J(季红娟), Zhang X-X(张小祥), Li Y-H(李育红), Pan C-H(潘存红), Zhang H-Y(张洪熙), Pan X-B(潘学彪). Preliminary analysis on resistance of rice black-streaked dwarf viral disease for germplasms with different gene-types. J Yangzhou Univ (扬州大学学报), 2008, 29(3): 73–77 (in Chinese with English abstract)

[4]         Li D-B(李德葆), Wang G-C(王拱辰), Sheng F-J(盛方镜). Epidemological study on rice virus disease and their control in Zhejiang province. Acta Phytopathol Sin (植物病理学报), 1979, 9(2): 73–87 (in Chinese with English abstract)

[5]         Heng M Z, Yang J, Chen J P, Adama M J. A black-streaked dwarf disease on rice in China is caused by a novel fijivirus. Arch Virol, 2008, 153: 1893–1898

[6]         Zhang H M, Chen J P, Lei J L, Adama M J. Sequence analysis shows that a dwarfing disease on rice, wheat and maize in China is caused by rice black-steaked dwarf virus. Eur J Plant Pathol, 2001, 107: 563–567

[7]         Wang H D, Chen J P, Wang A G, Jiang X H, Adama M J. Studies on th epidemiology and yield losses from rice black-streaked dwarf disease in a recent epidemic in Zhejiang province, China. Plant Pathol, 2009, 58, 815–825

[8]         Pan C-H(潘存红), Li A-H(李爱宏), Chen Z-X(陈宗祥), Wu L-B(吴林波), Dai Z-Y(戴正元), Zhang H-X(张洪熙), Huang L-S(黄年生), Chen X-J(陈夕军), Zhang Y-F(张亚芳), Zuo S-M(左示敏), Pan X-B(潘学彪). Detection of QTL for resistance to rice black-streaked dwarf viral disease. Acta Agron Sin (作物学报) 2009, 35(12): 2213–2217 (in Chinese with English abstract)

[9]         Beijing Agricultural University (北京农业大学). Plant Pathology of Agriculture(农业植物病理学). Beijing: Agriculture Press, 1982 (in Chinese)

[10]      Zhang H M, Chen J P, Adams M J. Molecular characterization of segments 1 to 6 of rice black-streaked dwarf virus from China provides the complete genome. Arch Virol, 2001, 146: 2331–2339

[11]      Zuhata F, Uyeda I, Kimura I. Close similarity between genome structures of rice black-streaked dwarf virus and maize rough dwarf virus. J Gen Virol, 1993, 74: 1227–1232

[12]      Sogai M, Uyeda I, Lee B C. Detection and assignment of proteins encoded by rice black streaked dwarf fiji virus S7, S8, S9 and S10. J Gen Virol, 1998, 79: 1487–1494

[13]      Marzachi C M, Boccardo G, Nuse D. Cloning of the maize rough dwarf virus genome: Molecular confirmation of the plant-reovirus classification scheme and identification of two large nonoverlapping coding domains with a single genomic segment. Virology, 1991, 180: 518–526

[14]      Bai F W, Yan J, Qu Z C, Zhang H W, Xu J, Ye M M, Shen D L. Phylogenetic analysis reveals that a dwarfing disease on different cereal crops in China is due to rice black streaked dwarf virus (RBSDV). Virus Genes, 2002, 25: 201–206

[15]      Wang C-H(王朝辉), Zhou Y-J(周益军), Fan Y-J(范永坚). Detection of rice black-streaked dwarf Fifivirus by RT-PCR, dot-blot hybridization and SDS-PAGE. J Nanjing Agric Univ (南京农业大学学报), 2001, 24 (4): 24–28 (in Chinese with English abstract)

[16]      Wang Z H, Fang S G, Zhang Z Y, Han C G, Li D W, Yu J L. Development of an ID-ELISA for the detection of rice black-streaked dwarf virus in plants. J Virol Methods, 2006, 134 (1-2): 61-5

[17]      Zhou G-H(周国辉), Wen J-J(温锦君), Cai D-J(蔡德江), Li P(李鹏), Xu D-L(许东林), Zhang S-G(张曙光). Chin Sci Bull (科学通报), 2007, 53 (20): 2500–2508 (in Chinese with English abstract)

[18]      Basten C J, Weir B S, Zeng Z B. QTL Cartographer, Version 1.16. 2002. Department of Statistics, North Carolina State University, Raleigh, NC. http://www.statgen.ncsu.edu/qtlcart

[19]      McCouch S R, Cho Y G, Yano M, Paule E, Blinstrue M, Mor-ishima H M, Kinosita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13

[20]      Hibino H. Biology and epidemiology of rice viruses. Annu Rev Phytopathol, 1996, 34: 249–274

[21]      Zhou T(周彤), Fan Y-J(范永坚), Chen Z-B(程兆榜), Zhou Y-J(周益军). Advances on resistance to rice stripe disease in rice cultivars. J Plant Genet Resour (植物遗传资源学报), 2009, 10(2): 328–333 (in Chinese with English abstract)

[22]      Sun D-Z(孙黛珍), Jiang L(江玲), Zhang Y-X(张迎信), Cheng X-N(程遐年), Zhai H-Q(翟虎渠), Wan J-M(万建民). Detection of QTL Associated with Rice Stripe Resistance in Cultivar IR24. Acta Agron Sin (作物学报), 2007, 33(1): 25–30 (in Chinese with English abstract)

[23]      Ding X-L(丁秀兰), Jiang L(江玲), Zhang Y-X(张迎信), Sun D-Z(孙黛珍), Zhai H-Q(翟虎渠), Wan J-M(万建民). QTL detection for rice stripe disease resistance using backcross inbred lines. Acta Agron Sin (作物学报), 2005, 31(8): 1041–1046 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!