欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2764-2774.doi: 10.3724/SP.J.1006.2024.42008

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻类病变早衰突变体lmes6的表型鉴定与基因定位

胡瑶洁1(), 刘亚萍1, 郑君妍1, 韩婷1, 马伯军1, 叶亚峰2, 刘斌美2,*(), 陈析丰1,*()   

  1. 1浙江师范大学生命科学学院, 浙江金华 321004
    2中国科学院合肥物质科学研究院, 安徽合肥 230031
  • 收稿日期:2024-02-05 接受日期:2024-06-20 出版日期:2024-11-12 网络出版日期:2024-07-12
  • 通讯作者: *刘斌美, E-mail: liubm@ipp.ac.cn; 陈析丰, E-mail: xfchen@zjnu.cn
  • 作者简介:E-mail: 2227126579@qq.com
  • 基金资助:
    国家自然科学基金项目(32071987);国家自然科学基金项目(32101697);国家自然科学基金项目(32272096);浙江省自然科学基金项目(LQ22C130005);浙江省自然科学基金项目(LZ23C130004);浙江省自然科学基金项目(LZ24C130016)

Phenotype identification and gene mapping of lesion mimic and early senescence mutant lmes6 in rice

HU Yao-Jie1(), LIU Ya-Ping1, ZHENG Jun-Yan1, HAN Ting1, MA Bo-Jun1, YE Ya-Feng2, LIU Bin-Mei2,*(), CHEN Xi-Feng1,*()   

  1. 1College of Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    2Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, Anhui, China
  • Received:2024-02-05 Accepted:2024-06-20 Published:2024-11-12 Published online:2024-07-12
  • Contact: *E-mail: liubm@ipp.ac.cn; E-mail: xfchen@zjnu.cn
  • Supported by:
    National Natural Science Foundation of China(32071987);National Natural Science Foundation of China(32101697);National Natural Science Foundation of China(32272096);Natural Science Foundation of Zhejiang Province(LQ22C130005);Natural Science Foundation of Zhejiang Province(LZ23C130004);Natural Science Foundation of Zhejiang Province(LZ24C130016)

摘要:

植物类病变与早衰的发生受激素、代谢、环境信号等多重因素影响, 其分子机制尚未完全清楚。从水稻辐射诱变库中筛选到一个类病变早衰突变体lmes6 (lesion mimic and early senescence 6), 与野生型相比, lmes6突变体叶片从分蘖期开始出现类病变、叶色发黄、叶绿素含量显著降低, 其穗长、每穗粒数、粒长及单株产量显著降低; 组织染色显示该突变体的叶片出现细胞程序性死亡及活性氧过量积累; 且该突变体增强了对水稻白叶枯病与细菌性条斑病的抗性。遗传分析表明lmes6的突变表型受单隐性核基因控制。利用图位克隆技术将目的基因精细定位在水稻7号染色体53 kb区间内, 经候选基因预测与PCR测序分析, 发现在lmes6突变体中一个编码Fd-GOGAT1 (依赖于铁氧还蛋白的谷氨酸合酶)的基因LOC_Os07g46460发生了一个碱基替换, 导致苯丙氨酸(F)变为亮氨酸(L), 是该基因的一个新的复等位基因, 与其他已报道的lc7abc1spl32等位突变相比, lmes6对水稻的生长发育、产量等方面抑制较小。对Fd-GOGAT1进行系统发育树分析及同源蛋白序列比对, 结果表明Fd-GOGAT1蛋白在单子叶植物中高度保守。

关键词: 类病变, 早衰, lmes6, 精细定位, 序列分析

Abstract:

The occurrence of lesion mimic and early senescence is affected by multiple factors, including hormones, metabolism, and ambient signals. However, the molecular mechanism underlying this process remains incompletely understood. In this study, we identified a lesion mimic and early senescence mutant, named lmes6 (lesion mimic and early senescence 6), through screening of a heavy ion beam radiation mutagenesis library. Comparative analysis with the wild-type control revealed that the leaves of the lmes6 mutant exhibited lesion mimic, chlorosis, and a significant reduction in chlorophyll content from the tillering stage. Additionally, the mutant displayed a notable decrease in panicle length, grain number per panicle, grain length, and yield per plant. Tissue staining showed that the mutant exhibited programmed cell death and excessive accumulation of reactive oxygen species in the leaves. Furthermore, the mutant displayed enhanced resistance to bacterial blight and bacterial leaf streak. Genetic analysis showed that the mutant phenotype was governed by a single recessive nuclear gene. Through map-based cloning techniques, the gene was precisely mapped to a 53 kb region on rice chromosome 7. Candidate gene prediction and PCR sequencing analysis identified a gene, LOC_Os07g46460, which encodes Fd-GOGAT1 (ferredoxin-dependent glutamate synthase 1) in the lmes6 mutant. A single base substitution in this gene resulted in the conversion of L-phenylalanine (F) to leucine (L), which is one of new multiple alleles of this gene. Interestingly, compared to the three allelic mutations of this gene reported, lc7, abc1, and spl32, the lmes6 mutant exhibited less impact on growth and yield of rice. Phylogenetic analysis and alignment of the homologous protein sequences of Fd-GOGAT1 revealed its high conservation among monocots.

Key words: lesion mimic, early senescence, lmes6, fine mapping, sequence analysis

表1

用于基因定位的分子标记PCR引物序列"

分子标记
Molecular marker
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
R7M30 ATGTCGCCTACGAGTTTTC TTCATGTGACCATTTGTGC
RM22017 GCTACCATGCTAGTCGTAATGC GCTAGTGTAAACTTTGGCATCG
RM22091 CCGTGAGGGCCATGTACAGACG TGCCACGTCAGCACTCTTTCTTCC
RM22144 GCAGAAGCAGGAGCCCAATATCC CTGTCTGTCCAGCACCAACACC
RM22171 TAGTACCGCCATTACCATTCATCC GACGGTGGGACTCCTAATTACAGC
Indel 1 CCACCTTCAATCCCTGCC AGTGAAGACCGCCCAGATC
Indel 2 GCACAGACACAACCTTTAGGA GTGTCAGGTTTTGGCTCGG
Indel 3 CTTACAATGCCCACAAAGGA TTGCTGGTAAAGAATGCTAATC
Indel 4 CGTTTGATCGTCCGTCTTAT AATTGCCATGACTCCTCCTC
Indel 5 CGCAGAGAGTTCAAGGAAGC AGACTGTTGCTAACCATCATGG

表2

水稻LMES6基因PCR扩增引物序列"

引物名称
Primer name
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
LMES6-1 TTCCCGCATCCACCACCA CATCTAGGGCTTGTATTGGTAC
LMES6-2 GATCTGAGATTCTTGGGCAATT TCACGCCCACGCCATACAG
LMES6-3 CAATGGCTTCACAAGGCAAGG TCACCGTGGGCATCTTCC
LMES6-4 CCCTGCCATCCCGATACTTC CCCTTCACCAGGCTTTGC
LMES6-5 TGAGCCTGCAACCTCCAT GGGCCATTACTGTGGACATCTT
LMES6-6 TTTCCTGGTGTTCCTGGTG GTGGACCGTGGTGTTATCGT

图1

水稻lmes6突变体的突变表型与抗病性 A: 分蘖期的植株表型; B: 成熟期的植株表型; C: 成熟期的剑叶表型; D: 染色前WT和lmes6的叶片表型; E~G: 叶片的TB、DAB和NBT染色; H: 接种Xoc和Xoo菌株的水稻叶片; I: 叶片的叶绿素含量测定; J: 接种Xoc菌株的叶片病斑占总叶面积的比例统计; K: 接种Xoo菌株叶片的病斑长度统计. WT: 野生型对照武运粳7号; lmes6: 水稻类病变和早衰突变体; **表示WT和lmes6间的t检验存在极显著性差异(P < 0.01); I~K中误差线表示标准差。标尺: 5 cm (A); 15 cm (B); 2 cm (C); 1 cm (D~H)."

图2

水稻lmes6突变体与其野生型对照的农艺性状比较 A: 株高; B: 剑叶长; C: 剑叶宽; D: 有效分蘖数; E: 穗长; F: 每穗粒数; G: 结实率; H: 粒长; I: 粒宽; J: 粒厚; K: 千粒重; L: 单株产量; M~O: WT 和lmes6 突变体的 10 粒种子的长度、宽度和厚度的照片; P: 穗长. *与**分别表示WT和lmes6间的t检验存在显著性差异(P < 0.05)和极显著性差异(P < 0.01); A~L中误差线表示标准差. 标尺: 1 cm (M~O); 5 cm (P)."

图3

突变体lmes6目的基因的精细定位与候选基因测序分析 A: lmes6基因精细定位的遗传图谱; n为定位分析所用到F2突变单株数, 标记下的数字为该标记检测到的重组数。B: 定位区间的所有注释基因; C: 候选基因LOC_Os07g46460突变位点的测序结果。"

图4

植物Fd-GOGAT1同源蛋白的系统进化树"

图5

水稻Fd-GOGAT1及其同源蛋白的序列比对 红色箭头或括弧表示序列发生变异的位点; lc7、abc1与lmes6基因为spl32基因的不同等位变异, 在Fd-GOGAT1蛋白的谷氨酰胺转移酶结构域, spl32突变体发生19个氨基酸的缺失, lc7突变体发生天冬酰胺(N)到丝氨酸(S)的替换; 在FMN结合结构域, lmes6突变体发生苯丙氨酸(F)到亮氨酸(L)的替换, abc1突变体发生赖氨酸(K)到谷氨酸(E)的替换."

[1] 丁文家, 胡峻铭, 王嘉力. 水稻育种主要目标性状基因挖掘研究进展. 杂交水稻, 2023, 38(3): 1-19.
Ding W J, Hu J M, Wang J L. Research progress on gene mining of main target traits in rice breeding. Hybrid Rice, 2023, 38(3): 1-19 (in Chinese with English abstract).
[2] Shang H H, Li P P, Zhang X B, Xu X, Gong J Y, Yang S H, He Y Q, Wu J L. The gain-of-function mutation, OsSpl26, positively regulates plant immunity in rice. Int J Mol Sci, 2022, 23: 14168.
[3] Zhang A P, Jiang H Z, Chu H W, Cao L M, Chen J G. Rice lesion mimic gene cloning and association analysis for disease resistance. Curr Issues Mol Biol, 2022, 44: 2350-2361.
doi: 10.3390/cimb44050160 pmid: 35678689
[4] Du D, Zhang C W, Xing Y D, Lu X, Cai L J, Yun H, Zhang Q L, Zhang Y Y, Chen X L, Liu M M, Sang X C, Ling Y H, Yang Z L, Li Y F, Lefebvre B, He G H. The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19. Plant Biotechnol J, 2021, 19: 1052-1064.
doi: 10.1111/pbi.13530 pmid: 33368943
[5] Sun F, Qi W W, Qian X Y, Wang Q J, Yang M F, Dong X X, Yang J S. Investigating the role of OsPDCD5, a homolog of the mammalian PDCD5, in programmed cell death by inducible expression in rice. Plant Mol Biol Rep, 2012, 30: 87-98.
[6] Zeng L R, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm B H, Leung H, Wang G L. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16: 2795-2808.
[7] Kojo K, Yaeno T, Kusumi K, Matsumura H, Fujisawa S, Terauchi R, Iba K. Regulatory mechanisms of ROI generation are affected by rice spl mutations. Plant Cell Physiol, 2006, 47: 1035-1044.
[8] Wang Z H, Wang Y, Hong X, Hu D H, Liu C X, Yang J, Li Y, Huang Y Q, Feng Y Q, Gong H Y, Li Y, Fang G, Tang H R, Li Y S. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. J Exp Bot, 2015, 66: 973-987.
doi: 10.1093/jxb/eru456 pmid: 25399020
[9] Schippers J H, Schmidt R, Wagstaff C, Jing H C. Living to die and dying to live: the survival strategy behind leaf senescence. Plant Physiol, 2015, 169: 914-930.
doi: 10.1104/pp.15.00498 pmid: 26276844
[10] Lee S, Masclaux-Daubresse C. Current understanding of leaf senescence in rice. Int J Mol Sci, 2021, 22: 4515.
[11] Li Z, Zhang Y, Liu L, Liu Q N, Bi Z Z, Yu N, Cheng S H, Cao L Y. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa). Plant Physiol Biochem, 2014, 80: 300-307.
[12] Xing Y D, Du D, Xiao Y H, Zhang T Q, Chen X L, Feng P, Sang X C, Wang N, He G H. Fine mapping of a new lesion mimic and early senescence 2 (lmes2) mutant in rice. Crop Sci, 2016, 56: 1550-1560.
[13] 王小虎. 水稻类病变早衰基因LMES3LMES4的克隆与功能研究. 扬州大学博士学位论文, 江苏扬州, 2018.
Wang X H.Map-based Cloning and Function Analysis of Two Lesion Mimic and Early Senescence Gene LMES3 and LMES4 in Rice. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2018 (in Chinese with English abstract).
[14] Yun H, Cai L J, Du D, Guo Y X, Sun H, Zhong X L, Peng X M, Dai J C, Zhang C W. Fine mapping and phenotype assessment of the novel lesion mimic and early senescence lmes5 mutant in rice. Euphytica, 2022, 218: 45.
[15] 赵晨晨, 黄福灯, 龚盼, 杨茜, 程方民, 潘刚. 水稻叶片早衰突变体osled的生理特征与基因定位. 作物学报, 2014, 40: 1946-1955.
doi: 10.3724/SP.J.1006.2014.01946
Zhao C C, Huang F D, Gong P, Yang X, Cheng F M, Pan G. Physiological characteristics and gene mapping of a leaf early- senescence mutant osled in rice. Acta Agron Sin, 2014, 40: 1946-1955 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01946
[16] Thordal Christensen H, Zhang Z G, Wei Y D, Collinge D B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J, 1997, 11: 1187-1194.
[17] Kumar D, Yusuf M, Singh P, Sardar M, Sarin N. Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-Protocol, 2014, 4: 1108-1111.
[18] Porra R J, Thompson W A, Kriedemann P E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents. Biochim Biophys Acta, 1989, 975: 384-394.
[19] 周永林, 申小磊, 周立帅, 林巧霞, 王朝露, 陈静, 冯慧捷, 张振文, 陈晓婷, 鲁国东. OsLOX10正调控水稻对稻瘟病和白叶枯病的抗性. 中国水稻科学, 2022, 36: 348-356.
doi: 10.16819/j.1001-7216.2022.210604
Zhou Y L, Shen X L, Zhou L S, Lin Q X, Wang Z L, Chen J, Feng H J, Zhang Z W, Chen X T, Lu G D. OsLOX10 positively regulates defense responses of rice to rice blast and bacterial blight. Chin J Rice Sci, 2022, 36: 348-356 (in Chinese with English abstract).
[20] Yang B, Bogdanove A. Inoculation and virulence assay for bacterial blight and bacterial leaf streak of rice. Methods Mol Biol, 2013, 956: 249-255.
doi: 10.1007/978-1-62703-194-3_18 pmid: 23135857
[21] 李儒剑, 万吉丽, 尹晓佳, 王克响, 米铁柱, 刘佳音, 于萌, 殷会德, 顾晓振, 李继明. SSR分子标记法快速进行常规稻种子纯度检测的研究及应用. 杂交水稻, 2022, 37(3): 11-19.
Li R J, Wan J L, Yin X J, Wang K X, Mi T Z, Liu J Y, Yu M, Yin H D, Gu X Z, Li J M. Research and application of SSR-based method for rapid seed purity assessment of conventional rice. Hybrid Rice, 2022, 37(3): 11-19 (in Chinese with English abstract).
[22] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
doi: 10.1073/pnas.88.21.9828 pmid: 1682921
[23] Xia Y M, Chen F S, Du Y, Liu C, Bu G H, Xin Y, Liu B Y. A modified SDS-based DNA extraction method from raw soybean. Biosci Rep, 2019, 39: BSR20182271.
[24] Wang Q, Chen H W, Zhu L, Feng P L, Fan M Q, Wang J Y. WSL214 negatively regulates ROS accumulation and pathogen defense response in rice. Plant Cell Rep, 2023, 42: 449-460.
[25] Liu Z Q, Zhu Y J, Shi H B, Qiu J H, Ding X H, Kou Y J. Recent progress in rice broad-spectrum disease resistance. Int J Mol Sci, 2021, 22: 11658.
[26] Chen H, Li C, Liu L, Zhao J, Cheng X, Jiang G, Zhai W. The Fd-GOGAT1 mutant gene lc7 confers resistance to Xanthomonas oryzae pv. oryzae in rice. Sci Rep, 2016, 6: 26411-26423.
[27] Yang X L, Nian J Q, Xie Q J, Feng J, Zhang F X, Jing H W, Zhang J, Dong G J, Liang Y, Peng J L, Wang G D, Qian Q, Zuo J R. Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies. Mol Plant, 2016, 9: 1520-1534.
[28] Sun L T, Wang Y H, Liu L L, Wang C M, Gan T, Zhang Z Y, Wang Y L, Wang D, Niu M, Long W H, Li X H, Zheng M, Jiang L, Wan J M. Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice. Sci Rep, 2017, 7: 41846-41858.
[29] Jamai A, Salome P A, Schilling S H, Weber A P, McClung C R. Arabidopsis photorespiratory serine hydroxymethyl transferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase. Plant Cell, 2009, 21: 595-606.
doi: 10.1105/tpc.108.063289 pmid: 19223513
[30] Coschigano K T, Melo-Oliveira R, Lim J, Coruzzi G M. Arabidopsis gls mutants and distinct Fd-GOGAT genes. Implications for photorespiration and primary nitrogen assimilation. Plant Cell, 1998, 10: 741-752.
pmid: 9596633
[31] 姚姝, 张亚东, 路凯, 王才林. 水稻可溶性淀粉合成酶基因SSⅡaSSⅢa的功能、等位变异及其互作研究进展. 中国水稻科学, 2022, 36: 227-236.
doi: 10.16819/j.1001-7216.2022.210705
Yao S, Zhang Y D, Lu K, Wang C L. Progress in functions, allelic variations and interactions of soluble starch synthases genes in rice SSIIa and SSIIIa. Chin J Rice Sci 2022, 36: 227-236 (in Chinese with English abstract).
[1] 郭春林, 林满红, 陈婷, 陈鸿飞, 林文芳, 林文雄. 根际微生物响应再生稻衰老的演变特征及其延效机制[J]. 作物学报, 2024, 50(8): 2039-2052.
[2] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[3] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
[4] 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819.
[5] 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671.
[6] 杨晔, 孙琦, 邢欣欣, 张海涛, 赵志超, 程治军. 包穗突变体sui1-5鉴定及OsPSS1互作蛋白筛选[J]. 作物学报, 2023, 49(3): 597-607.
[7] 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位[J]. 作物学报, 2023, 49(11): 3029-3041.
[8] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[9] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[10] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[11] 田彪, 丁仕林, 刘朝雷, 阮班普, 姜洪真, 郭锐, 董国军, 胡光莲, 郭龙彪, 钱前, 高振宇. 水稻苗期根部性状的遗传分析和最长根长QTL qLRL4的精细定位[J]. 作物学报, 2021, 47(10): 1863-1873.
[12] 周练, 刘朝显, 陈秋栏, 王文琴, 姚顺, 赵子堃, 朱思颖, 洪祥德, 熊雨涵, 蔡一林. 玉米籽粒缺陷突变基因dek54的精细定位及候选基因分析[J]. 作物学报, 2021, 47(10): 1903-1912.
[13] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[14] 任蒙蒙, 张红伟, 王建华, 王国英, 郑军. 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析[J]. 作物学报, 2020, 46(7): 1016-1024.
[15] 秦利萍,董二飞,白洋,周练,任岚扬,张任凤,刘朝显,蔡一林. 玉米tasselseed突变体ts12的遗传分析与分子鉴定[J]. 作物学报, 2020, 46(5): 690-699.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!