作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2754-2763.doi: 10.3724/SP.J.1006.2024.44001
周智满1(), 张小雨1, 高峰2, 戴志刚1, 许英1, 程超华1, 杨泽茂1, 粟建光1, 唐蜻1,*()
ZHOU Zhi-Man1(), ZHANG Xiao-Yu1, GAO Feng2, DAI Zhi-Gang1, XU Ying1, CHENG Chao-Hua1, YANG Ze-Mao1, SU Jian-Guang1, TANG Qing1,*()
摘要:
CsMIXTA在调控大麻雌性花器官中腺毛的发生和发育中发挥重要作用。为了研究CsMIXTA基因的表达调控, 对CsMIXTA基因上游2199 bp启动子序列进行了克隆。通过PlantCARE预测发现, 该启动子序列具有多个胁迫响应元件与光响应元件。根据预测的响应元件分布情况, 扩增获得5个5′端缺失的启动子片段。用克隆的启动子全长和缺失片段分别构建融合GUS基因的表达载体, 并将其瞬时转化到烟草叶片和工业大麻糖叶中。通过GUS染色观察发现, CsMIXTA启动子的核心区域位于-393~ -99 bp之间, 包含赤霉素响应元件TATC-box和转录起始元件TATA-box。通过LUC荧光素酶表达发现, CsMIXTA启动子的核心区域具有转录活性。研究还发现, CsMIXTA基因在工业大麻糖叶的腺毛中特异性表达。对启动子进行胁迫响应分析的结果显示, 低温、脱落酸(ABA)和赤霉素(GA3)都能增强该启动子的活性。这些结果为CsMIXTA基因调控机制研究奠定了重要基础。
[1] | 李秋实, 孟莹, 陈士林. 药用大麻种质资源分类与研究策略. 中国中药杂志, 2019, 44: 4309-4316. |
Li Q S, Meng Y, Chen S L. A new Cannabis germplasm classification system and research strategies of non-psychoactive medicinal Cannabis. China J Chin Mater Med 2019, 44: 4309-4316 (in Chinese with English abstract). | |
[2] | Goncalves J, Rosado T, Soares S, Simao A Y, Caramelo D, Luis A, Fernandez N, Barroso M, Gallardo E, Duarte A P. Cannabis and its secondary metabolites: their use as therapeutic drugs, toxicological aspects, and analytical determination. Medicines (Basel), 2019, 6: 31. |
[3] | Tanney C A S, Backer R, Geitmann A, Smith D L. Cannabis glandular trichomes: a cellular metabolite factory. Front Plant Sci, 2021, 12: 721986. |
[4] |
Backer R, Schwinghamer T, Rosenbaum P, McCarty V, Eich Bilodeau S, Lyu D, Ahmed M B, Robinson G, Lefsrud M, Wilkins O, Smith D L. Closing the yield gap for cannabis: a meta-analysis of factors determining cannabis yield. Front Plant Sci, 2019, 10: 495.
doi: 10.3389/fpls.2019.00495 pmid: 31068957 |
[5] | Burgel L, Hartung J, Schibano D, Graeff-Honninger S. Impact of different phytohormones on morphology, yield and cannabinoid content of Cannabis sativa L. Plants (Basel), 2020, 9: 725. |
[6] |
Chezem W R, Clay N K. Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. Phytochemistry, 2016, 131: 26-43.
doi: S0031-9422(16)30158-3 pmid: 27569707 |
[7] |
Brockington S F, Alvarez-Fernandez R, Landis J B, Alcorn K, Walker R H, Thomas M M, Hileman L C, Glover B J. Evolutionary analysis of the MIXTA gene family highlights potential targets for the study of cellular differentiation. Mol Biol Evol, 2013, 30: 526-540.
doi: 10.1093/molbev/mss260 pmid: 23188591 |
[8] | Matias-Hernandez L, Jiang W, Yang K, Tang K, Brodelius P E, Pelaz S.AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. Plant J, 2017, 90: 520-534. |
[9] | Shi P, Fu X, Shen Q, Liu M, Tang K.The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in Artemisia annua. New Phytol, 2017, 217: 261-276. |
[10] | Ewas M, Gao Y, Wang S, Liu X, Zhang H, Nishawy E M E, Ali F, Shahzad R, Ziaf K, Subthain H. Manipulation of SlMXl for enhanced carotenoids accumulation and drought resistance in tomato. Sci Bull, 2016, 61: 1413-1418. |
[11] |
Chalvin C, Drevensek S, Dron M, Bendahmane A, Boualem A. Genetic control of glandular trichome development. Trends Plant Sci, 2020, 25: 477-487.
doi: S1360-1385(19)30350-4 pmid: 31983619 |
[12] | Haiden S R, Apicella P V, Ma Y, Berkowitz G A. Overexpression of CsMIXTA, a transcription factor from Cannabis sativa, increases glandular trichome density in tobacco leaves. Plants (Basel), 2022, 11: 1519. |
[13] | Alter H, Peer R, Dombrovsky A, Flaishman M, Spitzer-Rimon B. Tobacco rattle virus as a tool for rapid reverse-genetics screens and analysis of gene function in Cannabis sativa L. Plants (Basel), 2022, 11: 327. |
[14] | Huang X, Chen W, Zhao Y, Chen J, Ouyang Y, Li M, Gu Y, Wu Q, Cai S, Guo F, Zhu P, Ao D, You S, Vasseur L, Liu Y. Deep learning-based quantification and transcriptomic profiling reveal a methyl jasmonate-mediated glandular trichome formation pathway in Cannabis sativa. Plant J 2024, 118: 1155-1173. |
[15] | Ma G, Zelman A K, Apicella P V, Berkowitz G. Genome-wide identification and expression analysis of homeodomain leucine zipper subfamily IV (HD-ZIP IV) gene family in Cannabis sativa L. Plants (Basel), 2022, 11: 1307. |
[16] | 张春晓, 王文棋, 蒋湘宁, 陈雪梅. 植物基因启动子研究进展. 遗传学报, 2004, 31: 1455-1464. |
Zhang C X, Wang W Q, Jiang X N, Chen X M. Review on plant gene promoters. J Genet Genomics, 2004, 31: 1455-1464 (in Chinese with English abstract). | |
[17] | 马倩, 马宝月, 穆波, 马慧. 植物基因启动子的克隆及分析的研究进展. 中国农业文摘-农业工程, 2018, 30(3): 23-29. |
Ma Q, Ma B Y, Mu B, Ma H. Research progress on cloning and analysis of plant gene promoter. Agric Sci Eng China, 2018, 30(3): 23-29 (in Chinese with English abstract). | |
[18] |
毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析. 作物学报, 2024, 50: 354-362.
doi: 10.3724/SP.J.1006.2024.33013 |
Mao Y, Zheng M M, Mu C X, Xie W B, Tang Q. Function analysis of the promoter of natural antisense transcript cis-NATZmNAC48 in maize under osmotic stress. Acta Agron Sin, 2024, 50: 354-362 (in Chinese with English abstract). | |
[19] | Ambawat S, Sharma P, Yadav N R, Yadav R C. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants, 2013, 19: 307-321. |
[20] | Du H, Feng B R, Yang S S, Huang Y B, Tang Y X. The R2R3-MYB transcription factor gene family in maize. PLoS One, 2012, 7: e37463. |
[21] |
周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析. 作物学报, 2022, 48: 590-596.
doi: 10.3724/SP.J.1006.2022.14016 |
Zhou Y, Zhao Z H, Zhang H N, Kong Y B. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean. Acta Agron Sin, 2022, 48: 590-596 (in Chinese with English abstract). | |
[22] | Shang-Guan X X, Xu B, Yu Z X, Wang L J, Chen X Y. Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco. J Exp Bot, 2008, 59: 3533-3542. |
[23] |
Livingston S J, Quilichini T D, Booth J K, Wong D C J, Rensing K H, Laflamme-Yonkman J, Castellarin S D, Bohlmann J, Page J E, Samuels A L. Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. Plant J, 2020, 101: 37-56.
doi: 10.1111/tpj.14516 |
[24] | Maes L, Inzé D, Goossens A. Functional specialization of the TRANSPARENT TESTA GLABRA1 network allows differential hormonal control of laminal and marginal trichome initiation in Arabidopsis rosette leaves. Plant Physiol, 2008, 148: 1453-1464. |
[25] | Xia X C, Hu Q Q, Li W, Chen Y, Han L H, Tao M, Wu W Y, Li X B, Huang G Q. Cotton (Gossypium hirsutum) JA23 and SLR1 function in jasmonate and gibberellin mediated epidermal cell differentiation and elongation. Plant Cell Tissue Organ Cult (PCTOC), 2018, 133: 249-262. |
[26] | Zhu L, Guan Y, Liu Y, Zhang Z, Jaffar M A, Song A, Chen S, Jiang J, Chen F. Regulation of flowering time in Chrysanthemum by the R2R3 MYB transcription factor CmMYB2 is associated with changes in gibberellin metabolism. Hortic Res, 2020, 7: 96. |
[27] | 赵悦, 赵艳艳, 李强锋, 段红俊. 青海茄参MYB转录因子家族生物信息学及应答低温胁迫分析. 分子植物育种, 网络首发[2023-12-06], https://link.cnki.net/urlid/46.1068.s.20231205.1916.027. |
Zhao Y, Zhao Y Y, Li Q F, Duan H J. Bioinformatics analysis of MYB transcription factor family in mandragora chinghaiensis under low temperature induction. Mol Plant Breed, Published online [2023-12-06], https://link.cnki.net/urlid/46.1068.s.20231205.1916.027 (in Chinese with English abstract). | |
[28] | Yin X, Cui Y, Wang M, Xia X. Overexpression of a novel MYB-related transcription factor, OsMYBR1, confers improved drought tolerance and decreased ABA sensitivity in rice. Biochem Biophys Res Commun, 2017, 490: 1355-1361. |
[1] | 项嘉铭, 戴茜, 刘立军. 外源水杨酸提高云麻1号(Cannabis sativa L.)对铜胁迫的耐受性[J]. 作物学报, 2023, 49(7): 1979-1993. |
[2] | 靖小菁, 杨新笋, 靳晓杰, 刘意, 雷剑, 王连军, 柴沙沙, 张文英, 焦春海. 甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析[J]. 作物学报, 2023, 49(12): 3289-3301. |
[3] | 许艳萍, 杨明, 郭鸿彦, 杨清辉. 5个工业大麻品种对5种重金属污染土壤的修复潜力[J]. 作物学报, 2020, 46(12): 1970-1978. |
[4] | 苏亚春,王竹青,李竹,刘峰,许莉萍,阙友雄,戴明剑,陈允浩. 甘蔗过氧化物酶基因ScPOD02的克隆与功能鉴定[J]. 作物学报, 2017, 43(04): 510-521. |
[5] | 贾双伟,高英,赵开军. 芥菜锌指蛋白转录因子基因Bj26的克隆与鉴定[J]. 作物学报, 2014, 40(07): 1174-1181. |
[6] | 李妮娜,丁林云,张志远,郭旺珍. 棉花叶肉原生质体分离及目标基因瞬时表达体系的建立[J]. 作物学报, 2014, 40(02): 231-239. |
[7] | 张庆林, 赵艳, 李晓薇, 翟莹, 张艳, 王英, 李景文, 王庆钰. 大豆硬脂酸-ACP脱饱和酶基因启动子的克隆及其表达活性分析[J]. 作物学报, 2011, 37(07): 1205-1211. |
[8] | 孙啸;董建辉;陈明;徐兆师;叶兴国;李连城;曲延英;马有志. 大豆抗逆基因GmDREB3启动子的克隆及调控区段分析[J]. 作物学报, 2008, 34(08): 1475-1479. |
[9] | 陈吉宝;景蕊莲;毛新国;昌小平;王述民. 普通菜豆PvP5CS2基因对逆境胁迫的应答[J]. 作物学报, 2008, 34(07): 1121-1127. |
[10] | 丁玉梅;杨正安;周晓罡;张绍松;孙茂林. 马铃薯质体表达载体构建及GFP基因在块茎中的瞬时表达[J]. 作物学报, 2008, 34(06): 978-983. |
[11] | 叶兴国;王艳丽;康乐;杜丽璞;徐惠君. 农杆菌敏感小麦基因型的筛选及其转化[J]. 作物学报, 2005, 31(12): 1552-1556. |
[12] | 杜娟;朱祯;李晚忱. 植物逆境诱导启动子mwcs120的克隆及表达特性研究[J]. 作物学报, 2005, 31(10): 1328-1332. |
|