欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (02): 231-239.doi: 10.3724/SP.J.1006.2014.00231

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花叶肉原生质体分离及目标基因瞬时表达体系的建立

李妮娜,丁林云,张志远,郭旺珍*   

  1. 南京农业大学作物遗传与种质创新国家重点实验室 / 教育部杂交棉创制工程研究中心, 江苏南京210095
  • 收稿日期:2013-06-17 修回日期:2013-09-24 出版日期:2014-02-12 网络出版日期:2013-12-15
  • 通讯作者: 郭旺珍, E-mail: moelab@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31171590)资助。

Isolation of Mesophyll Protoplast and Establishment of Gene Transient Expression System in Cotton

LI Ni-Na,DING Lin-Yun,ZHANG Zhi-Yuan,GUO Wang-Zhen*   

  1. State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton Research & Development Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2013-06-17 Revised:2013-09-24 Published:2014-02-12 Published online:2013-12-15
  • Contact: 郭旺珍, E-mail: moelab@njau.edu.cn

摘要:

以棉花幼嫩子叶为外植体材料,分析影响棉花叶肉原生质体分离及目标基因转化的主要因素,以棉花叶肉原生质体为受体,建立稳定、高效的目标基因瞬时表达与鉴定体系。技术体系包括,选择自然生长12 d的棉花幼嫩子叶为外植体材料,混合1.5%纤维素酶、0.4%离析酶、0.5 mol L–1甘露醇、20 mmol L–1 KCl20 mmol L–1 MES0.1 mol L–1 CaCl21.0 g L–1 BSA等酶液,在28黑暗条件下振荡酶解8 h,可游离出浓度达1.0×106 m L–1以上的纯净棉花叶肉原生质体。利用该方法将棉花锌指蛋白基因GhZFP2整合到pJIT166-GFP质粒载体,构建了GhZFP2:GFP融合载体,采用40% PEG(4000)介导转化,获得高转化率的棉花叶肉原生质体。对目标基因瞬时表达产物检测表明,GhZFP2蛋白清晰定位在细胞核上。

关键词: 棉花, 原生质体, PEG介导, 转化, 目标基因, 瞬时表达

Abstract:

In this paper, taking healthy cotyledon leaves as explants material, combining with the screening of key factors related to isolation and transformation of cotton mesophyll protoplasts, a stable and efficient transient expression and identification system for the target genes was established via transfoming the cotton mesophyll protoplast cells. The major technical system includes: the enzymatic method is used to isolate mesophyll protoplasts. In detail, healthy 12-day-old young cotton cotyledons in natural growth condition were selected as the explant, and were digested with enzyme solution including 1.5% cellulose, 0.4% macerozyme, 0.5 mol L–1 mannitol, 20 mmol L–1 KCl, 20 mmol L–1 MES, 0.1 mol L–1 CaCl2, and 1.0 g L–1 BSA for eight hours with gentle shaking at 28℃ and under dark conditions. The concentration of the pure cotton mesophyll protoplasts was more than 1.0×106 mL–1. Using the system, we integrated a cotton zinc finger protein gene GhZFP2 into pJIT166-GFP plasmid vector, constructed the GhZFP2:GFP fusion vectors, and transformed it into purified cotton mesophyll protoplast mediated with 40% PEG4000. As a result, cotton mesophyll protoplast with high transformation frequency was obtained. Transient expression detection for GhZFP2 protein showed that it was clearly located in the cell nucleus.

Key words: Cotton, Protoplast, PEG-mediated, Transformation, Target genes, Transient expression

[1]Werr W, Lörz H. Transient gene expression in a Gramineae cell line. Mol Gen Genet, 1986, 202: 471–475



[2]Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure J D. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J, 2008, 56: 169–179



[3]王华忠, 陈雅平, 陈佩度. 植物瞬间表达系统与功能基因组学研究. 生物工程学报, 2007, 33: 367–374



Wang H Z, Chen Y P, Chen P D. Plant transient expression system in functional genomics. Chin J Biotechnol, 2007, 33: 367–374 (in Chinese with English abstract)



[4]杨捷, Showalter A M. 拟南芥中一个经典阿拉伯半乳糖蛋白的亚细胞定位. 福州大学学报(自然科学版), 2010, 38: 753–757



Yang J, Showalter A M. Subcellular localization of a classical Arabinogalactan - protein from Arabidopsis. J Fuzhou Univ (Nat Sci Edn), 2010, 38: 753–757 (in Chinese with English abstract)



[5]刘肖飞, 梁卫红. 根癌农杆菌介导的GFP在洋葱表皮细胞定位研究. 河南师范大学学报(自然科学版), 2009, 37(1): 123–125



Liu X F, Liang W H. Localization analysis of GFP in onion epidermal cell via Agrobacterium tumefaciens-Mediated transformation. J Henan Normal Univ (Nat Sci Edn), 2009, 37(1): 123–125 (in Chinese with English abstract)



[6]杨光, 曹雪, 房经贵, 黄振喜, 陶建敏, 王晨. 葡萄花发育基因的亚细胞定位和表达分析. 中国农业科学, 2011, 44: 641–650



Yang G, Zao X, Fang J G, Huang Z X, Tao J M, Wang C. Sub-Cellular localization and expression analysis of genes involved in grapevine floral development. Sci Agri Sin, 2011, 44: 641–650 (in Chinese with English abstract)



[7]Zou J J,Wei F J, Wang C ,Wu J J, Ratnasekera D, Liu W X, Wu W H. Arabidopsis calcium dependent protein kinase CPK10 functions in abscisic acid and Ca2+ mediated stomata regulation in response to drought stress. Plant Physiol, 2010, 154: 1232–1243



[8]Jiang L, Wang J, Liu Z, Wang L, Zhang F, Liu G C, Zhong Q. Silencing induced by inverted repeat constructs in protoplasts of Nicotiana benthamiana. Plant Cell Tiss Organ Cult, 2010, 100: 139–148



[9]孙鹤, 郎志宏, 朱莉, 黄大昉. 玉米、小麦、水稻原生质体制备条件优化. 生物工程学报, 2013, 29: 224–234



Sun H, Lang Z H, Zhu L, Huang D F. Optimized condition for protoplast isolation from maize, wheat and rice leaves. Chin J Biotech, 2013, 29: 224–234 (in Chinese with English abstract)



[10]Zhang H, Ni L, Liu Y P, Wang Y F, Zhang A Y, Tan M P, Jiang M Y. The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice. J Integr Plant Biol, 2012, 54: 500–510



[11]Zhang Y, Xiao W K, Luo L J, Pang J H, Rong W, He C Z. Down regulation of OsPK1, a cytosolic pyruvate kinase, by T-DNA in sertion causes dwar?sm and panicle enclosure in rice. Planta, 2012, 235: 25–38



[12]Paterson A H, Wendel J F, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker K C, Shu S, Udall J, Yoo M, Byers R, Chen W, Doron-Faigenboim A, Duke M V, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee T, Li J, Lin L, Liu T, Marler B S, Page J T, Roberts A W, Romanel E, Sanders W S, Szadkowski E,  Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashfari H, Bedon F, Bowers J E, Brubaker C L, Chee P W, Das S, Gingle A R, Haigler C H, Harker D, Hoffmann L V, Hovav R, Jones D C, Lemke C, Mansoor S, Rahman M, Rainville L N, Rambani A, Reddy U K, Rong J, Saranga Y, Scheffler B E, Scheffler J A, Stelly D M, Triplett B A, Deynze A V, Vaslin M F S, Waghmare V N, Walford S, Wright R J, Zaki E A, Zhang T, Dennis E S, Mayer K F X, Peterson D G, Rokhsar D S, Wang X, Schmutz J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492: 423–427



[13]Wang K B, Wang Z W, Li F G, Ye W W, Wang J Y, Song G L, Yue Z, Cong L, Shang H H, Zhu S L, Zou C S, LI Q, Yuan Y L, Lu C R, Wei H L, Gou C Y, Zheng Z Q, Yin Y, Zhang X Y, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X . The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012, 44: 1098–1103



[14]王晋成. 五个棉花逆境相关锌指蛋白基因的克隆与功能研究. 南京农业大学硕士学位论文, 2010



Wang J C. Cloning and characterization of five zinc-finger proteins (ZFPs) related with stress in cotton. MS Thesis of Nanjing Agricultural University, 2010 (in Chinese with English abstract)



[15]Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2007, 2: 1565–1572



[16]于晓玲, 李春强, 彭明. 植物原生质体技术及其应用. 中国农学通报, 2009, 25(8): 22–26



Yu X L, Li C Q, Peng M. Advances on the research of protoplast technology. Chin Agri Sci Bull, 2009, 25(8): 2–26 (in Chinese with English abstract)



[17]Cooking E. A method for the isolation of plant protoplasts and vacuoles. Nature, 1960, 187: 962–963



[18]Nagata T, Takebe I. Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta, 1970, 92: 301–308



[19]Kitajima A, Asatsuma S, Okada H, Hamada Y, Kaneko K, Nanjo Y, Kawagoe Y, Toyooka K, Matsuoka K, Takeuchi M, Nakano A, Mitsui T. The rice alpha-amylase glycoprotein is targeted from the Golgi apparatus through the secretory pathway to the plastids. Plant Cell, 2009, 21: 2844–2858



[20]周颖, 姜国勇. 玉米核糖体失活蛋白基因z108在烟草原生质体中的转化及其表达. 生物技术通报, 2010, (4): 99–102



Zhou Y, Jiang G Y. Transformation and expression of maize ribosome-inactivating protein gene z108 in Tobacco protoplasts. Biotechnol Bull, 2010, (4): 99–102 (in Chinese with English abstract)



[21]Zhang Y, Su J B, Duan S, Ao Y, Dai J R, Liu J, Wang P, Li Y G, Liu B, Feng D R, Wang J F,Wang H B. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods , 2011, 7: 30



[22]秦永华, 刘进元. 棉花组织培养与植株再生. 分子植物育种, 2006, 4: 583–592



Qin Y H, Liu J Y. Cotton tissue culture and plant regeneration. Mol Plant Breed, 2006, 4: 583–592 (in Chinese with English abstract)



[23]汪静儿, 孙玉强, 燕树锋, 道德, 沈晓佳, 祝水金. 陆地棉原生质体培养与植株再生技术研究. 棉花学报, 2008, 20: 403–407



Wang J E, Sun Y Q, Yan S F, Dao D, Shen X J, Zhu S J. Study on the plant regeneration from protoplasts of upland cotton (Gossypium hirsutum L.) via somatic embryogenesis. Cotton Sci, 2008, 20: 403–407 (in Chinese with English abstract)



[24]Fu L L, Yang X Y, Zhang X L, Wang Z W, Feng C H, Liu Z X, Jiang P Y, Zhang J L. Regeneration and identification of interspecific asymmetric somatic hybrids obtained by donor-recipient fusion in cotton. Chin Sci Bull, 2009, 54: 2219–2227



[25]王喆之, 张苏锋, 胡正海. 陆地棉胚性愈伤组织原生质体的制备、培养及植株再生. 植物学报, 1998, 40: 234–240



Wang Z Z, Zhang S F, Hu Z H. Isolation, culture and plant regeneration of protoplasts from an embryogenic callus tissue of Gossypium hirsutum. Acta Bot Sin, 1998, 40: 234–240 (in Chinese with English abstract)



[26]李仁敬, 张忠新, 石玉瑚. 棉花叶肉原生质体的分离初报. 遗传, 1980, 2(4): 36



Li R J, Zhang Z X, Shi Y H. A preliminary report on the separation of cotton mesphyll protoplast. Hereditas, 1980, 2(4): 36 (in Chinese with English abstract)



[27]Yang X Y, Zhang X L, Jin S X, Fu L L, Wang L G. Production and characterization of asymmetric hybrids between upland cotton Coker 201 (Gossypium hirsutum) and wild cotton (G. klozschianum Anderss). Plant Cell Tiss Organ Cult, 2007, 89: 225–235



[28]汪静儿, 孙玉强, 祝水金. 棉花原生质体培养与体细胞杂交研究进展. 棉花学报, 2007, 19: 139–144



Wang J E, Sun Y Q, Zhu S J. Advances in cotton protoplast culture and somatic hybridization. Cotton Sci, 2007, 19: 139–144 (in Chinese with English abstract)



[29]白珊珊, 尹敏娟, 张磊, 康向阳. 新疆杨愈伤组织原生质体的游离与纯化. 生物技术通讯, 2011, 22: 49–52



Bai S S, Yin M J, Zhang L, Kang X Y. Isolation and purification of callus-derived protoplasts of Populus Alba L var pyramidalis. Lett Biotechnol, 2011, 22: 49–52 (in Chinese with English abstract)



[30]张红梅, 王俊丽. 植物原生质体游离及应用. 河北林果研究, 2002, 17: 376–382



Zhang H M, Wang J L. Plant protoplast isolation, culture and application. Hebei J For Orchard Res, 2002, 17: 376–382 (in Chinese with English abstract)



[31]陈名红, 熊立, 陈学军. 烟草叶肉原生质体分离和纯化研究. 云南民族大学学报(自然科学版), 2005, 14: 326–329



Chen M H, Xiong L, Chen X J. Isolation and purification of mesophyll protoplast in Tabacco. J Yunnan National Univ (Nat Sci Edn), 2005, 14: 326–329 (in Chinese with English abstract)



[32]He P, Shan L, Sheen J. The use of protoplasts to study innate immune responses. Methods Mol Biol, 2007, 354: 1–9



[33]Sun Y Q, Zhang X L, Huang C, Nie Y C, Guo X P. Plant regeneration via somatic embryogenesis from protoplast s of six explants in Coker 201 (Gossypium hirsutum). Plant Cell Tiss Organ Cult, 2005, 82: 309–315



[34]Gao X Q, Wheeler T, Li Z H, Kenerley C M, He P, Shan L B. Silencing GhNDR1 and GhMKK2 compromised cotton resistance to Verticillium wilt. Plant J, 2011, 66: 293–305



[35]梁大伟. 拟南芥叶肉原生质体分离及瞬时表达体系的建立. 兰州大学硕士学位论文, 2009



Liang D W. Isolation of mesphyll protoplast from Arabidopsis thaliana and the setup of transient expression assay system. MS Thesis of Lanzhou University, 2009 (in Chinese with English abstract)



[36]Maas C, Werr W. Mechanism and optimized condition for PEG mediated DNA transfection into plant protoplast. Plant Cell Reps, 1989, 8: 148–151



[37]Lazzeri P A, Brettschneider R, Luhrs R, Lorz H. Stable transformation of barley via PEG-induced direct DNA uptake into protoplasts. Theor Appl Genet, 1991, 81: 437–444



[38]Kirschner M, Winkelhaus S, Thierfelder J M, Nover L. Transient expression and heat-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts. Plant J, 2000, 24: 397–411



[39]黄瑾, 李燕, 张薇, 李旭锋, 杨毅. 甘蓝型油菜瞬时表达系统研究. 四川大学学报(自然科学版), 2008, 45(增刊): 19–24



Huang J, Li Y, Zhang W, Li X F, Yang Y. Transient expression system in protoplasts of Brassica napus L. J Sichuan Univ (Nat Sci Edn), 2008, 45(suppl): 19–24 (in Chinese with English abstract)



[40]李文彬, 王革娇, Stanchina E, Castiglione S, 孙勇如, Sala F. PEG介导原生质体转化获得水稻转基因植株. 植物学报, 1995, 37: 409–412



Li W S, Wang G J, Stanchina E, Castiglione S, Sun Y R, Sala F. Transgenic rice plants produced by PEG-mediated plasmid uptake into protoplasts. Acta Bot Sin, 1995, 37: 409–412 (in Chinese with English abstract)

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[5] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[8] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[9] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[10] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[11] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[12] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[13] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[14] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[15] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!