作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2742-2753.doi: 10.3724/SP.J.1006.2024.41007
LI Yun-Xiang1(), ZHANG Si-Tian1, HOU Wan-Wei2, ZHANG Xiao-Juan1,*()
摘要:
以引进国际干旱地区农业研究中心(ICARDA)的159份小麦为研究对象, 在苗期用20% PEG-6000模拟干旱条件进行处理, 以正常营养液作为对照, 分析干旱环境对7个苗期相关生理性状(丙二醛含量、超氧化物歧化酶活性、相对电导率、过氧化物酶活性、可溶性糖含量、脯氨酸含量和叶绿素含量)的影响, 进行相关性分析, 并结合55K SNP芯片对159份小麦的苗期抗旱相关生理性状进行关联分析。研究结果表明, 干旱处理后, 其体内脯氨酸含量和可溶性糖含量均呈现上升趋势, 其余性状则并未表现出一致的上升或下降。相关性分析表明, 在正常处理条件下, 丙二醛含量与过氧化物酶活性呈显著正相关, 和脯氨酸含量呈极显著负相关; 过氧化物酶活性和可溶性糖含量呈极显著负相关。在干旱胁迫处理条件下, 可溶性糖含量与丙二醛含量呈极显著正相关, 与相对电导率呈显著正相关; 叶绿素含量与可溶性糖含量呈极显著正相关, 与脯氨酸含量呈显著负相关。关联分析结果显示, 利用24,151个SNP标记位点结合苗期相关生理性状在P≤0.001水平下共定位到311个抗旱相关标记, 分布于小麦的21条染色体上, 贡献率为7.13%~21.11%。2种处理下检测到8个稳定位点, 分别位于1B、2B和6A染色体上, 贡献率为7.85%~14.58%。检测到1个多效应位点, 同时关联了超氧化物歧化酶活性和可溶性糖含量2个性状, 位于3D染色体上, 贡献率为7.95%~8.69%。检测到4个显著位点与相对电导率、过氧化物酶活性、叶绿素含量的抗旱系数和干旱处理下的相对电导率、过氧化物酶活性、脯氨酸含量和超氧化物歧化酶活性等性状相关联, 分别位于2D、3A和4A染色体上, 贡献率为7.61%~14.74%。
[1] | 李茂松, 李森, 李育慧. 中国近50年旱灾灾情分析. 中国农业气象, 2003, 24(1): 7-10. |
Li M S, Li S, Li Y H. Analysis of drought disasters in China in the last 50 years. Chin J Agrometeorol, 2003, 24(1): 7-10 (in Chinese with English abstract). | |
[2] | 唐洪波, 陈强. 青海省干旱成因分析. 水资源与水工程学报, 2007, 18(2): 89-91. |
Tang H B, Chen Q. Analysis of drought causes in Qinghai province. J Water Resour Water Engin, 2007, 18(2): 89-91 (in Chinese with English abstract). | |
[3] | 李建洪. 青海省东部农业区春旱时空分布特征. 科技咨询导报, 2007, (6): 175. |
Li J H. The spatiotemporal distribution characteristics of spring drought in the eastern agricultural region of Qinghai province. Sci Technol Consult Herald, 2007, (6): 175 (in Chinese with English abstract). | |
[4] | 叶景秀. 青海高原春小麦PEG胁迫与复水后叶片差异蛋白质组学研究. 中国生物化学与分子生物报, 2012, 28: 1049-1056. |
Ye J X. Differential proteomics study of PEG stress and rewatering leaves of spring wheat in the Qinghai Plateau. Chin J Biochem Mol Biol, 2012, 28: 1049-1056 (in Chinese with English abstract). | |
[5] | 孙晓晓.青海省东部农业区旱灾风险分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2016. |
Sun X X. Drought Risk Analysis in Agricultural Areas in Eastern Qinghai Province. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract). | |
[6] | Sallam A, Alqudah A M, Dawood M F A, Baenziger P S, Börner A. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int J Mol Sci, 2019, 20: 3137. |
[7] |
陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用. 作物学报, 2022, 48: 478-487.
doi: 10.3724/SP.J.1006.2022.11026 |
Chen X Y, Song Y H, Zhang M H, Li X Y, Li H, Wang Y X, Qi X L. The physiological and biochemical stress of drought on different varieties of wheat seedlings and the alleviating effect of exogenous 5-aminolevulinic acid. Acta Agron Sin, 2022, 48: 478-487 (in Chinese with English abstract). | |
[8] |
崔兆韵, 徐祎, 邹俊丽, 尹逊栋, 江梦圆. 干旱及复水对冬小麦叶片生理指标和光合特性的影响. 节水灌溉, 2023, (10): 36-42.
doi: 10.12396/jsgg.2023185 |
Cui Z Y, Xu Y, Zou J L, Yin X D, Jiang M Y. Effects of drought and rewatering on physiological indexes and photosynthetic characteristics of winter wheat leaves. Water-saving Irrig, 2023, (10): 36-42 (in Chinese with English abstract). | |
[9] | Nezhadahmadi A, Prodhan Z H, Faruq G. Drought tolerance in wheat. Sci World J, 2013, 2013: 610721. |
[10] | 田梦雨. 干旱胁迫对小麦苗期生长的影响及其生理机制. 南京农业大学硕士学位论文, 江苏南京, 2009. |
Tian M Y. Effects of Drought Stress on Wheat Seedling Growth and Its Physiological Mechanism. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2009 (in Chinese with English abstract). | |
[11] | Nardino M, Perin E C, Aranha B C, Carpes S T, Fontoura B H, de Sousa D J P, Freitas D S. Understanding drought response mechanisms in wheat and multi-trait selection. PLoS One, 2022, 17: e0266368. |
[12] | 张政. 小麦抗旱种质资源的筛选与相关性状的全基因组关联分析. 山西农业大学硕士学位论文, 山西晋中, 2019. |
Zhang Z. Screening of Drought-Resistant Germplasm Resources and Genome-Wide Association Analysis of Related Traits in Wheat. MS Thesis of Shanxi Agricultural University, Jinzhong, Shanxi, China, 2019 (in Chinese with English abstract) | |
[13] |
Zhou Z, Guan H, Liu C, Zhang Z, Geng S, Qin M, Li W, Shi X, Dai Z, Lei Z, Wu Z, Tian B, Hou J. Identification of genomic regions affecting grain peroxidase activity in bread wheat using genome-wide association study. BMC Plant Biol, 2021, 21: 523.
doi: 10.1186/s12870-021-03299-6 pmid: 34758752 |
[14] | Rabbi S M H A, Kumar A, Mohajeri Naraghi S, Simsek S, Sapkota S, Solanki S, Alamri M S, Elias E M, Kianian S, Missaoui A, Mergoum M. Genome-wide association mapping for yield and related traits under drought stressed and non-stressed environments in wheat. Front Genet, 2021, 12: 649988. |
[15] | 王巧玲.小麦苗期抗旱相关性状关联分析及种质资源的筛选. 山东农业大学硕士学位论文, 山东泰安, 2018. |
Wang Q L. Correlation Analysis of Drought Resistance-Related Traits at Wheat Seedling Stage and Screening of Germplasm Resources. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2018 (in Chinese with English abstract). | |
[16] |
王继庆, 任毅, 时晓磊, 王丽丽, 张新忠, 苏力坛·姑扎丽阿依, 谢磊, 耿洪伟. 小麦籽粒超氧化物歧化酶(SOD)活性全基因组关联分析. 中国农业科学, 2021, 54: 2249-2265.
doi: 10.3864/j.issn.0578-1752.2021.11.001 |
Wang J Q, Ren Y, Shi X L, Wang L L, Zhang X Z, Sulitan G A Y, Xie L, Geng H W. Genome-wide association analysis of superoxide dismutase (SOD) activity in wheat grains. Sci Agric Sin, 2021, 54: 2249-2265 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.11.001 |
|
[17] | 陈爱葵, 韩瑞宏, 李东洋, 凌连莲, 罗惠霞, 唐上剑. 植物叶片相对电导率测定方法比较研究. 广东教育学院学报, 2010, 30(5): 88-91. |
Chen A K, Han R H, Li D Y, Ling L L, Luo H X, Tang S J. Comparative study on the determination method of relative conductivity of plant leaves. J Guangdong Univ Edu, 2010, 30(5): 88-91 (in Chinese with English abstract). | |
[18] | 徐新娟, 李勇超. 2种植物相对电导率测定方法比较. 江苏农业科学, 2014, 42(7): 311-312. |
Xu X J, Li Y C. Comparison of methods for determining relative conductivity of two plants. Jiangsu Agric Sci, 2014, 42(7): 311-312 (in Chinese with English abstract). | |
[19] | Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics, 2011, 2: 2156-2158. |
[20] |
Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129.
doi: 10.1093/bioinformatics/bti282 pmid: 15705655 |
[21] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population- based linkage analyses. Am J Hum Genet, 2007, 81: 559-575.
doi: 10.1086/519795 pmid: 17701901 |
[22] |
Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res, 2009, 19: 1655-1664.
doi: 10.1101/gr.094052.109 pmid: 19648217 |
[23] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[24] | Ltaief S, Krouma A. Functional dissection of the physiological traits promoting durum wheat (Triticum durum Desf.) tolerance to drought stress. Plants (Basel), 2023, 12: 1420. |
[25] |
钮力亚, 王伟, 王伟伟, 付晶, 王奉芝, 赵松山, 于亮. 盐胁迫下小麦品种生理指标的变化规律. 中国农学通报, 2019, 35(2): 1-4.
doi: 10.11924/j.issn.1000-6850.casb17120087 |
Niu L Y, Wang W, Wang W W, Fu J, Wang F Z, Zhao S S, Yu L. Changes in physiological indexes of wheat varieties under salt stress. Chin Agric Sci Bull, 2019, 35(2): 1-4 (in Chinese with English abstract). | |
[26] |
Kamruzzaman M, Beyene M A, Siddiqui M N, Ballvora A, Léon J, Naz A A. Pinpointing genomic loci for drought-induced proline and hydrogen peroxide accumulation in bread wheat under field conditions. BMC Plant Biol, 2022, 22: 584.
doi: 10.1186/s12870-022-03943-9 pmid: 36513990 |
[27] |
Upadhyay D, Budhlakoti N, Singh A K, Bansal R, Kumari J, Chaudhary N, Padaria J C, Sareen S, Kumar S. Drought tolerance in Triticum aestivum L. genotypes associated with enhanced antioxidative protection and declined lipid peroxidation.3 Biotech, 2020, 10: 281.
doi: 10.1007/s13205-020-02264-8 pmid: 32550100 |
[28] | 袁聪颖, 陈柯新, 王悦, 郭冰玉, 郑晓漫. 不同逆境胁迫下小麦苗期生理指标的测定. 内江科技, 2021, 42(8): 49-51. |
Yuan C Y, Chen K X, Wang Y, Guo B Y, Zheng X M. Determination of physiological indexes of wheat seedlings under different stresses. Neijiang Sci Technol, 2021, 42(8): 49-51 (in Chinese with English abstract). | |
[29] | Shao H B, Liang Z S, Shao M G. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Coll Surf B Biointerfaces, 2006, 47: 132-139. |
[30] | Bendou O, Gutiérrez-Fernández I, Marcos-Barbero E L, Bueno-Ramos N, Miranda-Apodaca J, González-Hernández A I, Morcuende R, Arellano J B. Physiological and antioxidant response to different water deficit regimes of flag leaves and ears of wheat grown under combined elevated CO2 and high temperature. Plants (Basel), 2022, 11: 2384. |
[31] | 肖冬宇, 吴端阳, 文雪, 周岚, 贺宏超, 王岩岩. 两种小麦在盐胁迫下早期幼苗生长及生理生化指标变化规律. 湖北农业科学, 2021, 60(15): 29-33. |
Xiao D Y, Wu D Y, Wen X, Zhou L, He H C, Wang Y Y. Changes in early seedling growth and physiological and biochemical indexes of two kinds of wheat under salt stress. Hubei Agric Sci, 2021, 60(15): 29-33 (in Chinese with English abstract). | |
[32] | Li C Y, Zhang X C, Li C, Li C. Ionomic and metabolic responses of wheat seedlings to PEG-6000-simulated drought stress under two phosphorus levels. PLoS One, 2022, 17: e0274915. |
[33] | 毕红园, 赵智勇, 曹梦琳, 司冠, 袁嘉玮. 11个小麦品种对干旱胁迫的响应及抗旱性评价. 江苏农业科学, 2023, 51(20): 85-92. |
Bi H Y, Zhao Z Y, Cao M L, Si G, Yuan J W. Response and drought resistance evaluation of 11 wheat varieties to drought stress. Jiangsu Agric Sci, 2023, 51(20): 85-92 (in Chinese with English abstract). | |
[34] |
郑福兴, 颜安, 高雪, 严勇亮, 王睿, 耿洪伟. 水旱处理下小麦叶绿素相对含量全基因组关联分析. 植物遗传资源学报, 2021, 22: 1334-1347.
doi: 10.13430/j.cnki.jpgr. 20210309003 |
Zheng F X, Yan A, Gao X, Yan Y L, Wang R, Geng H W. Genome-wide association analysis of relative chlorophyll content in wheat under water and drought treatment. J Plant Genet Resour, 2021, 22: 1334-1347 (in Chinese with English abstract). | |
[35] | Koua A P, Oyiga B C, Dadshani S, Benaouda S, Sadeqi M B, Rascher U, Léon J, Ballvora A. Chromosome 3A harbors several pleiotropic and stable drought-responsive alleles for photosynthetic efficiency selected through wheat breeding. Plant Direct, 2022, 6: e438. |
[36] |
Gao F, Wen W, Liu J, Rasheed A, Yin G, Xia X, Wu X, He Z. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci, 2015, 6: 1099.
doi: 10.3389/fpls.2015.01099 pmid: 26734019 |
[37] | Ahmed S F, Ahmed J U, Hasan M, Mohi-Ud-Din M. Assessment of genetic variation among wheat genotypes for drought tolerance utilizing microsatellite markers and morpho-physiological characteristics. Heliyon, 2023, 9: e21629. |
[38] | EI Rawy M A, Hassan M I. Assessment of genetic diversity in durum and bread wheat genotypes based on drought tolerance and SSR markers. Plant Breed Biotechnol, 2021, 9(2): 89-103. |
[39] |
Rabieyan E, Bihamta M R, Moghaddam M E, Alipour H, Mohammadi V, Azizyan K, Javid S. Analysis of genetic diversity and genome-wide association study for drought tolerance related traits in Iranian bread wheat. BMC Plant Biol, 2023, 23: 431.
doi: 10.1186/s12870-023-04416-3 pmid: 37715130 |
[1] | 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296. |
[2] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
[3] | 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186. |
[4] | 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178. |
[5] | 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960. |
[6] | 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988. |
[7] | 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090. |
[8] | 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884. |
[9] | 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4型ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657. |
[10] | 韩丽, 汤胜胜, 李佳, 胡海斌, 刘龙龙, 吴斌. 燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位[J]. 作物学报, 2024, 50(7): 1710-1718. |
[11] | 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683. |
[12] | 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583. |
[13] | 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405. |
[14] | 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383. |
[15] | 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450. |
|