作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2742-2753.doi: 10.3724/SP.J.1006.2024.41007
所属专题: 小麦:遗传育种·种质资源·分子遗传学
LI Yun-Xiang1(
), ZHANG Si-Tian1, HOU Wan-Wei2, ZHANG Xiao-Juan1,*(
)
摘要:
以引进国际干旱地区农业研究中心(ICARDA)的159份小麦为研究对象, 在苗期用20% PEG-6000模拟干旱条件进行处理, 以正常营养液作为对照, 分析干旱环境对7个苗期相关生理性状(丙二醛含量、超氧化物歧化酶活性、相对电导率、过氧化物酶活性、可溶性糖含量、脯氨酸含量和叶绿素含量)的影响, 进行相关性分析, 并结合55K SNP芯片对159份小麦的苗期抗旱相关生理性状进行关联分析。研究结果表明, 干旱处理后, 其体内脯氨酸含量和可溶性糖含量均呈现上升趋势, 其余性状则并未表现出一致的上升或下降。相关性分析表明, 在正常处理条件下, 丙二醛含量与过氧化物酶活性呈显著正相关, 和脯氨酸含量呈极显著负相关; 过氧化物酶活性和可溶性糖含量呈极显著负相关。在干旱胁迫处理条件下, 可溶性糖含量与丙二醛含量呈极显著正相关, 与相对电导率呈显著正相关; 叶绿素含量与可溶性糖含量呈极显著正相关, 与脯氨酸含量呈显著负相关。关联分析结果显示, 利用24,151个SNP标记位点结合苗期相关生理性状在P≤0.001水平下共定位到311个抗旱相关标记, 分布于小麦的21条染色体上, 贡献率为7.13%~21.11%。2种处理下检测到8个稳定位点, 分别位于1B、2B和6A染色体上, 贡献率为7.85%~14.58%。检测到1个多效应位点, 同时关联了超氧化物歧化酶活性和可溶性糖含量2个性状, 位于3D染色体上, 贡献率为7.95%~8.69%。检测到4个显著位点与相对电导率、过氧化物酶活性、叶绿素含量的抗旱系数和干旱处理下的相对电导率、过氧化物酶活性、脯氨酸含量和超氧化物歧化酶活性等性状相关联, 分别位于2D、3A和4A染色体上, 贡献率为7.61%~14.74%。
| [1] | 李茂松, 李森, 李育慧. 中国近50年旱灾灾情分析. 中国农业气象, 2003, 24(1): 7-10. |
| Li M S, Li S, Li Y H. Analysis of drought disasters in China in the last 50 years. Chin J Agrometeorol, 2003, 24(1): 7-10 (in Chinese with English abstract). | |
| [2] | 唐洪波, 陈强. 青海省干旱成因分析. 水资源与水工程学报, 2007, 18(2): 89-91. |
| Tang H B, Chen Q. Analysis of drought causes in Qinghai province. J Water Resour Water Engin, 2007, 18(2): 89-91 (in Chinese with English abstract). | |
| [3] | 李建洪. 青海省东部农业区春旱时空分布特征. 科技咨询导报, 2007, (6): 175. |
| Li J H. The spatiotemporal distribution characteristics of spring drought in the eastern agricultural region of Qinghai province. Sci Technol Consult Herald, 2007, (6): 175 (in Chinese with English abstract). | |
| [4] | 叶景秀. 青海高原春小麦PEG胁迫与复水后叶片差异蛋白质组学研究. 中国生物化学与分子生物报, 2012, 28: 1049-1056. |
| Ye J X. Differential proteomics study of PEG stress and rewatering leaves of spring wheat in the Qinghai Plateau. Chin J Biochem Mol Biol, 2012, 28: 1049-1056 (in Chinese with English abstract). | |
| [5] | 孙晓晓.青海省东部农业区旱灾风险分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2016. |
| Sun X X. Drought Risk Analysis in Agricultural Areas in Eastern Qinghai Province. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract). | |
| [6] | Sallam A, Alqudah A M, Dawood M F A, Baenziger P S, Börner A. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int J Mol Sci, 2019, 20: 3137. |
| [7] |
陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用. 作物学报, 2022, 48: 478-487.
doi: 10.3724/SP.J.1006.2022.11026 |
| Chen X Y, Song Y H, Zhang M H, Li X Y, Li H, Wang Y X, Qi X L. The physiological and biochemical stress of drought on different varieties of wheat seedlings and the alleviating effect of exogenous 5-aminolevulinic acid. Acta Agron Sin, 2022, 48: 478-487 (in Chinese with English abstract). | |
| [8] |
崔兆韵, 徐祎, 邹俊丽, 尹逊栋, 江梦圆. 干旱及复水对冬小麦叶片生理指标和光合特性的影响. 节水灌溉, 2023, (10): 36-42.
doi: 10.12396/jsgg.2023185 |
| Cui Z Y, Xu Y, Zou J L, Yin X D, Jiang M Y. Effects of drought and rewatering on physiological indexes and photosynthetic characteristics of winter wheat leaves. Water-saving Irrig, 2023, (10): 36-42 (in Chinese with English abstract). | |
| [9] | Nezhadahmadi A, Prodhan Z H, Faruq G. Drought tolerance in wheat. Sci World J, 2013, 2013: 610721. |
| [10] | 田梦雨. 干旱胁迫对小麦苗期生长的影响及其生理机制. 南京农业大学硕士学位论文, 江苏南京, 2009. |
| Tian M Y. Effects of Drought Stress on Wheat Seedling Growth and Its Physiological Mechanism. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2009 (in Chinese with English abstract). | |
| [11] | Nardino M, Perin E C, Aranha B C, Carpes S T, Fontoura B H, de Sousa D J P, Freitas D S. Understanding drought response mechanisms in wheat and multi-trait selection. PLoS One, 2022, 17: e0266368. |
| [12] | 张政. 小麦抗旱种质资源的筛选与相关性状的全基因组关联分析. 山西农业大学硕士学位论文, 山西晋中, 2019. |
| Zhang Z. Screening of Drought-Resistant Germplasm Resources and Genome-Wide Association Analysis of Related Traits in Wheat. MS Thesis of Shanxi Agricultural University, Jinzhong, Shanxi, China, 2019 (in Chinese with English abstract) | |
| [13] |
Zhou Z, Guan H, Liu C, Zhang Z, Geng S, Qin M, Li W, Shi X, Dai Z, Lei Z, Wu Z, Tian B, Hou J. Identification of genomic regions affecting grain peroxidase activity in bread wheat using genome-wide association study. BMC Plant Biol, 2021, 21: 523.
doi: 10.1186/s12870-021-03299-6 pmid: 34758752 |
| [14] | Rabbi S M H A, Kumar A, Mohajeri Naraghi S, Simsek S, Sapkota S, Solanki S, Alamri M S, Elias E M, Kianian S, Missaoui A, Mergoum M. Genome-wide association mapping for yield and related traits under drought stressed and non-stressed environments in wheat. Front Genet, 2021, 12: 649988. |
| [15] | 王巧玲.小麦苗期抗旱相关性状关联分析及种质资源的筛选. 山东农业大学硕士学位论文, 山东泰安, 2018. |
| Wang Q L. Correlation Analysis of Drought Resistance-Related Traits at Wheat Seedling Stage and Screening of Germplasm Resources. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2018 (in Chinese with English abstract). | |
| [16] |
王继庆, 任毅, 时晓磊, 王丽丽, 张新忠, 苏力坛·姑扎丽阿依, 谢磊, 耿洪伟. 小麦籽粒超氧化物歧化酶(SOD)活性全基因组关联分析. 中国农业科学, 2021, 54: 2249-2265.
doi: 10.3864/j.issn.0578-1752.2021.11.001 |
|
Wang J Q, Ren Y, Shi X L, Wang L L, Zhang X Z, Sulitan G A Y, Xie L, Geng H W. Genome-wide association analysis of superoxide dismutase (SOD) activity in wheat grains. Sci Agric Sin, 2021, 54: 2249-2265 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.11.001 |
|
| [17] | 陈爱葵, 韩瑞宏, 李东洋, 凌连莲, 罗惠霞, 唐上剑. 植物叶片相对电导率测定方法比较研究. 广东教育学院学报, 2010, 30(5): 88-91. |
| Chen A K, Han R H, Li D Y, Ling L L, Luo H X, Tang S J. Comparative study on the determination method of relative conductivity of plant leaves. J Guangdong Univ Edu, 2010, 30(5): 88-91 (in Chinese with English abstract). | |
| [18] | 徐新娟, 李勇超. 2种植物相对电导率测定方法比较. 江苏农业科学, 2014, 42(7): 311-312. |
| Xu X J, Li Y C. Comparison of methods for determining relative conductivity of two plants. Jiangsu Agric Sci, 2014, 42(7): 311-312 (in Chinese with English abstract). | |
| [19] | Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics, 2011, 2: 2156-2158. |
| [20] |
Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129.
doi: 10.1093/bioinformatics/bti282 pmid: 15705655 |
| [21] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population- based linkage analyses. Am J Hum Genet, 2007, 81: 559-575.
doi: 10.1086/519795 pmid: 17701901 |
| [22] |
Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res, 2009, 19: 1655-1664.
doi: 10.1101/gr.094052.109 pmid: 19648217 |
| [23] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
| [24] | Ltaief S, Krouma A. Functional dissection of the physiological traits promoting durum wheat (Triticum durum Desf.) tolerance to drought stress. Plants (Basel), 2023, 12: 1420. |
| [25] |
钮力亚, 王伟, 王伟伟, 付晶, 王奉芝, 赵松山, 于亮. 盐胁迫下小麦品种生理指标的变化规律. 中国农学通报, 2019, 35(2): 1-4.
doi: 10.11924/j.issn.1000-6850.casb17120087 |
| Niu L Y, Wang W, Wang W W, Fu J, Wang F Z, Zhao S S, Yu L. Changes in physiological indexes of wheat varieties under salt stress. Chin Agric Sci Bull, 2019, 35(2): 1-4 (in Chinese with English abstract). | |
| [26] |
Kamruzzaman M, Beyene M A, Siddiqui M N, Ballvora A, Léon J, Naz A A. Pinpointing genomic loci for drought-induced proline and hydrogen peroxide accumulation in bread wheat under field conditions. BMC Plant Biol, 2022, 22: 584.
doi: 10.1186/s12870-022-03943-9 pmid: 36513990 |
| [27] |
Upadhyay D, Budhlakoti N, Singh A K, Bansal R, Kumari J, Chaudhary N, Padaria J C, Sareen S, Kumar S. Drought tolerance in Triticum aestivum L. genotypes associated with enhanced antioxidative protection and declined lipid peroxidation.3 Biotech, 2020, 10: 281.
doi: 10.1007/s13205-020-02264-8 pmid: 32550100 |
| [28] | 袁聪颖, 陈柯新, 王悦, 郭冰玉, 郑晓漫. 不同逆境胁迫下小麦苗期生理指标的测定. 内江科技, 2021, 42(8): 49-51. |
| Yuan C Y, Chen K X, Wang Y, Guo B Y, Zheng X M. Determination of physiological indexes of wheat seedlings under different stresses. Neijiang Sci Technol, 2021, 42(8): 49-51 (in Chinese with English abstract). | |
| [29] | Shao H B, Liang Z S, Shao M G. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Coll Surf B Biointerfaces, 2006, 47: 132-139. |
| [30] | Bendou O, Gutiérrez-Fernández I, Marcos-Barbero E L, Bueno-Ramos N, Miranda-Apodaca J, González-Hernández A I, Morcuende R, Arellano J B. Physiological and antioxidant response to different water deficit regimes of flag leaves and ears of wheat grown under combined elevated CO2 and high temperature. Plants (Basel), 2022, 11: 2384. |
| [31] | 肖冬宇, 吴端阳, 文雪, 周岚, 贺宏超, 王岩岩. 两种小麦在盐胁迫下早期幼苗生长及生理生化指标变化规律. 湖北农业科学, 2021, 60(15): 29-33. |
| Xiao D Y, Wu D Y, Wen X, Zhou L, He H C, Wang Y Y. Changes in early seedling growth and physiological and biochemical indexes of two kinds of wheat under salt stress. Hubei Agric Sci, 2021, 60(15): 29-33 (in Chinese with English abstract). | |
| [32] | Li C Y, Zhang X C, Li C, Li C. Ionomic and metabolic responses of wheat seedlings to PEG-6000-simulated drought stress under two phosphorus levels. PLoS One, 2022, 17: e0274915. |
| [33] | 毕红园, 赵智勇, 曹梦琳, 司冠, 袁嘉玮. 11个小麦品种对干旱胁迫的响应及抗旱性评价. 江苏农业科学, 2023, 51(20): 85-92. |
| Bi H Y, Zhao Z Y, Cao M L, Si G, Yuan J W. Response and drought resistance evaluation of 11 wheat varieties to drought stress. Jiangsu Agric Sci, 2023, 51(20): 85-92 (in Chinese with English abstract). | |
| [34] |
郑福兴, 颜安, 高雪, 严勇亮, 王睿, 耿洪伟. 水旱处理下小麦叶绿素相对含量全基因组关联分析. 植物遗传资源学报, 2021, 22: 1334-1347.
doi: 10.13430/j.cnki.jpgr. 20210309003 |
| Zheng F X, Yan A, Gao X, Yan Y L, Wang R, Geng H W. Genome-wide association analysis of relative chlorophyll content in wheat under water and drought treatment. J Plant Genet Resour, 2021, 22: 1334-1347 (in Chinese with English abstract). | |
| [35] | Koua A P, Oyiga B C, Dadshani S, Benaouda S, Sadeqi M B, Rascher U, Léon J, Ballvora A. Chromosome 3A harbors several pleiotropic and stable drought-responsive alleles for photosynthetic efficiency selected through wheat breeding. Plant Direct, 2022, 6: e438. |
| [36] |
Gao F, Wen W, Liu J, Rasheed A, Yin G, Xia X, Wu X, He Z. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci, 2015, 6: 1099.
doi: 10.3389/fpls.2015.01099 pmid: 26734019 |
| [37] | Ahmed S F, Ahmed J U, Hasan M, Mohi-Ud-Din M. Assessment of genetic variation among wheat genotypes for drought tolerance utilizing microsatellite markers and morpho-physiological characteristics. Heliyon, 2023, 9: e21629. |
| [38] | EI Rawy M A, Hassan M I. Assessment of genetic diversity in durum and bread wheat genotypes based on drought tolerance and SSR markers. Plant Breed Biotechnol, 2021, 9(2): 89-103. |
| [39] |
Rabieyan E, Bihamta M R, Moghaddam M E, Alipour H, Mohammadi V, Azizyan K, Javid S. Analysis of genetic diversity and genome-wide association study for drought tolerance related traits in Iranian bread wheat. BMC Plant Biol, 2023, 23: 431.
doi: 10.1186/s12870-023-04416-3 pmid: 37715130 |
| [1] | 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386. |
| [2] | 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484. |
| [3] | 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466. |
| [4] | 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398. |
| [5] | 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284. |
| [6] | 孟然, 李赵嘉, 冯薇, 陈悦, 刘路平, 杨春燕, 鲁雪林, 王秀萍. 大豆不同生育时期耐盐性综合评价及耐盐种质筛选[J]. 作物学报, 2025, 51(8): 1991-2008. |
| [7] | 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219. |
| [8] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. |
| [9] | 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189. |
| [10] | 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138. |
| [11] | 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086. |
| [12] | 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032. |
| [13] | 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127. |
| [14] | 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175. |
| [15] | 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250. |
|
||