• •
朱金娟1,**,王慧萍1,**,杨国栋1,王宇诚1,杨晨1,王斌2,Agustiani Nurwulan3,涂军明4,毕俊国5,崔克辉1,黄见良1,彭少兵1, 袁珅1,*
Zhu Jin-Juan1,**,Wang Hui-Ping1,**,Yang Guo-Dong1,Wang Yu-Cheng1,Yang Chen1,Wang Bin2,Agustiani Nurwulan3,Tu Jun-Ming4,Bi Jun-Guo5,Cui Ke-Hui1,Huang Jian-Liang1,Peng Shao-Bing1,Yuan Shen1,*
摘要: 为探究节水灌溉以及品种类型对再生稻产量和稻米品质的影响,2023年在湖北蕲春和浠水开展大田试验。以3个节水抗旱稻品种(旱优8200、旱优116和旱优73)和3个优质稻品种(箴两优郢香丝苗、荃优粤农丝苗和荃优607)为供试材料,以湖北省再生稻大面积种植的普通水稻品种(两优6326)为对照,设置常规灌溉和节水灌溉2种水分管理方式,分析再生稻模式下不同品种产量和稻米品质对水分管理的响应差异。结果表明,相较于常规灌溉,节水灌溉处理使头季和再生季灌水量分别平均减少76%和85%,但产量和稻米的加工、外观和蒸煮食味品质在水分处理间无显著差异,且这一结果在不同试验地点间保持一致。这表明,与常规灌溉相比,节水抗旱稻和优质稻品种在节水灌溉条件下均能保持较为稳定的头季和再生季产量和稻米品质。优质稻头季和再生季产量分别为8.54 t hm?2和5.88 t hm?2,相较于普通水稻产量差异不显著;但头季和再生季整精米率分别显著提高13.5个百分点和20.6个百分点,垩白粒率和垩白度分别显著降低22.6个百分点和6.4个百分点、10.8个百分点和1.8个百分点。节水抗旱稻在头季的产量以及稻米加工、外观和蒸煮食味品质方面与普通水稻无显著差异,但在再生季,产量显著下降17%,整精米率显著提高17.0个百分点,垩白粒率和垩白度分别降低5.5个百分点和1.0个百分点。在同一品种类型中,再生稻产量和稻米品质存在显著的品种间差异。相关性分析表明,再生季稻米的加工、外观和蒸煮食味品质指标均与头季相应指标呈正相关关系。因此,在降水条件较好的地区,结合优良水稻品种,实施“以雨养为主、关键生育期适时灌溉”的节水灌溉策略,可有效降低水分消耗、提升水分利用效率,同时实现再生稻的高产与优质目标。
| [1] Bautista R C, Counce P A. An overview of rice and rice quality. Cereal Food World, 2020, 65: 0052. [2] Pang X T, Zhang D M, Xue H B, et al. Effects of low field temperature on the physicochemical properties and fine structure stability of high-quality rice starch during the grain filling stage. Foods, 2024, 13: 3094. [3] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学:生命科学, 2014, 44: 845–850. Peng S B. Reflection on China’s rice production strategies during the transition period. Sci Sin Vitae, 2014, 44: 845–850 (in Chinese with English abstract). [4] 徐富贤, 熊洪, 张林, 等. 再生稻产量形成特点与关键调控技术研究进展. 中国农业科学, 2015, 48: 1702–1717. Xu F X, Xiong H, Zhang L, Zhu Y C, Jiang P, Guo X Y, Liu M. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies. Sci Agric Sin, 2015, 48: 1702–1717 (in Chinese with English abstract). [5] Yuan S, Cassman K G, Huang J L, et al. Can ratoon cropping improve resource use efficiencies and profitability of rice in Central China? Field Crops Res, 2019, 234: 66–72. [6] 莫文伟, 旷娜, 郑华斌, 等. 再生稻与晚稻常规米质及RVA谱特征的对比研究. 湖南农业大学学报(自然科学版), 2020, 46: 271–277. Mo W W, Kuang N, Zheng H B, et al. Comparative study on quality and RVA profile parameters of ratoon rice and late rice. J Hunan Agric Univ (Nat Sci), 2020, 46: 271–277 (in Chinese with English abstract). [7] 杨晨, 郑常, 袁珅, 等. 再生稻肥料管理对不同品种产量和品质的影响. 中国水稻科学, 2022, 36: 65–76. Yang C, Zheng C, Yuan S, et al. Effect of fertilizer management on the yield and quality of different rice varieties in ratoon rice. Chin J Rice Sci, 2022, 36: 65–76 (in Chinese with English abstract). [8] 杨德生, 黄见良, 彭少兵. 机收再生稻高产优质栽培技术研究进展. 中国稻米, 2023, 29(5): 1–8. Yang D S, Huang J L, Peng S B. Research progresses of mechanized rice ratooning technology for improving grain yield and quality. China Rice, 2023, 29(5): 1–8 (in Chinese with English abstract). [9] 唐启源, 青先国. 湖南再生稻技术进步与生产发展对策. 杂交水稻, 2023, 38(1): 1–9. Tang Q Y, Qing X G. Technological advancement and production development countermeasures of ratooning rice in Hunan province. Hybrid Rice, 2023, 38(1): 1–9 (in Chinese with English abstract). [10] 张启发. 绿色超级稻培育的设想. 分子植物育种, 2005, 3: 601–602. Zhang Q F. Strategies for developing green super rice. Mol Plant Breed, 2005, 3: 601–602 (in Chinese with English abstract). [11] 人均可再生内陆淡水资源(立方米). 世界银行集团(数据). https://data.worldbank.org.cn/indicator/ER.H2O.INTR.PC?name_desc=false. Per capita renewable internal freshwater resources (cubic meters). World Bank Group (data). https://data.worldbank.org.cn/indicator/ER.H2O.INTR.PC?name_desc=false (in Chinese). [12] 张方潇, 陈翛, 黄娜, 等. 长江流域单季稻关键生育期高温、干旱及其复合事件时空分布特征. 中国农业大学学报, 2025, 30(4): 1–14. Zhang F X, Chen X, Huang N, et al. Spatio-temporal distribution of high-temperature, drought and their compound events during the critical fertility stages of single-season rice in the Yangtze River Basin. J China Agric Univ, 2025, 30(4): 1–14 (in Chinese with English abstract). [13] 毛紫琳, 宋国庆, 马云静, 等. 杂交稻与常规稻产量受干旱影响的meta分析及干物质分配差异. 华中农业大学学报, 2025, 44(1): 1–14. Mao Z L, Song G Q, Ma Y J, et al. Meta-analysis of effects of drought on yield and differences in dry matter allocation of hybrid rice and inbred rice. J Huazhong Agric Univ, 2025, 44(1): 1–14 (in Chinese with English abstract). [14] 王成瑷, 王伯伦, 张文香, 等. 土壤水分胁迫对水稻产量和品质的影响. 作物学报, 2006, 32: 131–137. Wang C A, Wang B L, Zhang W X, et al. Effects of water stress of soil on rice yield and quality. Acta Agron Sin, 2006, 32: 131–137 (in Chinese with English abstract). [15] 王平荣, 邓晓建, 高晓玲, 等. 干旱对稻米品质的影响研究. 中国农学通报, 2004, 20(6): 282–284. Wang P R, Deng X J, Gao X L, et al. Effect of drought on rice quality. Chin Agric Sci Bull, 2004, 20(6): 282–284 (in Chinese with English abstract). [16] 张自常, 李鸿伟, 陈婷婷, 等. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响. 中国农业科学, 2011, 44: 4988–4998. Zhang Z C, Li H W, Chen T T, et al. Effect of furrow irrigation and alternate wetting and drying irrigation on grain yield and quality of rice. Sci Agric Sin, 2011, 44: 4988–4998 (in Chinese with English abstract). [17] 吕银斐, 任艳芳, 刘冬, 等. 不同水分管理方式对水稻生长、产量及品质的影响. 天津农业科学, 2016, 22(1): 106–110. Lyu Y F, Ren Y F, Liu D, et al. Effect of different water managements on growth, grain yield and quality of rice. Tianjin Agric Sci, 2016, 22(1): 106–110 (in Chinese with English abstract). [18] 邱菁华, 薛铸, 孙书洪, 等. 间歇灌溉下不同生育时期喷施水溶性硅肥对水稻产量及品质的影响. 东北农业大学学报, 2022, 53(9): 50–57. Qiu J H, Xue Z, Sun S H, et al. Effects of water-soluble silicon fertilizer application at different growth stages on rice yield and quality under intermittent irrigation. J Northeast Agric Univ, 2022, 53(9): 50–57 (in Chinese with English abstract). [19] 张宏路, 朱安, 胡昕, 等. 稻田常用节水灌溉方式对水稻产量和米质影响的研究进展. 中国稻米, 2018, 24(6): 8–12. Zhang H L, Zhu A, Hu X, et al. Research progress on effects of common water saving irrigation methods in paddy field on rice yield and quality. China Rice, 2018, 24(6): 8–12 (in Chinese with English abstract). [20] Luo L J. Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot, 2010, 61: 3509–3517. [21] 罗利军. 节水抗旱稻的培育与应用. 生命科学, 2018, 30: 1108–1112. Luo L J. Development of water-saving and drought-resistance rice (WDR). Chin Bull Life Sci, 2018, 30: 1108–1112 (in Chinese with English abstract). [22] 罗利军. 节水抗旱稻的培育与产业发展. 中国稻米, 2022, 28(5): 14–19. Luo L J. Breeding and industrial development of water-saving and drought-resistance rice. China Rice, 2022, 28(5): 14–19 (in Chinese with English abstract). [23] 杨学龙, 张雷, 阚民东, 等. 节水抗旱稻旱优116的特征特性及在沿淮地区旱种旱管栽培技术. 农业科技通讯, 2024, (2): 175–178. Yang X L, Zhang L, Kan M D, et al. Characteristics of Water-saving and Drought-resistant Rice Hanyou 116 and its dry cultivation and management techniques in the Huai River Basin Region. Bull Agric Sci Technol, 2024, (2): 175–178 (in Chinese). [24] 周洲, 张莉侠, 贾磊. 农业绿色发展背景下节水抗旱稻经济效益评估. 上海农业学报, 2022, 38(4): 146–152. Zhou Z, Zhang L X, Jia L. Evaluation of economic benefits of water-saving and drought-resistance rice under the background of agricultural green development. Acta Agric Shanghai, 2022, 38(4): 146–152 (in Chinese with English abstract). [25] Wang Q, Wang H, Liu Q J, et al. Moderate alternate wetting and drying irrigation enhances drought-resistance abilities by improving structural mesophyll conductance of water-saving and drought-resistant rice under severe drought. Physiol Plant, 2024, 176: e14518. [26] 杨书婷, 颜泽东, 陈风波. 优质稻品种采用的经济效益评价: 基于广东水稻种植户调研数据的分析. 广东农业科学, 2024, 51(10): 137–149. Yang S T , Yan Z D, Chen F B. Evaluation on economic benefits of adoption of high-quality rice cultivars-a study based on survey data from rice farmers in Guangdong province. Guangdong Agric Sci, 2024, 51(10): 137–149 (in Chinese with English abstract). [27] 国家水稻数据中心. 2025. https://www.ricedata.cn/variety/index.htm. China Rice Data Center. 2025. https://www.ricedata.cn/variety/index.htm (in Chinese). [28] Wang Y C, Zheng C, Xiao S, et al. Agronomic responses of ratoon rice to nitrogen management in Central China. Field Crops Res, 2019, 241: 107569. [29] 林强, 蔡秋华, 崔丽丽, 等. 强再生力水稻品种筛选与选育研究进展. 中国稻米, 2022, 28(5): 1–6. Lin Q, Cai Q H, Cui L L, et al. Research progress on screening and breeding of ratoon rice varieties. China Rice, 2022, 28(5): 1–6 (in Chinese with English abstract). [30] 董华林, 涂军明, 费震江, 等. 再生稻适宜品种筛选试验初报. 湖北农业科学, 2019, 58(增刊2): 94–98. Dong H L, Tu J M, Fei Z J, et al. A preliminary report on screening of suitable ratooning rice varieties. Hubei Agric Sci, 2019, 58(S2): 94–98 (in Chinese with English abstract). [31] Xia F Z, Wang W K, Weng Y L, et al. Productivity and water use of ratoon rice cropping systems with water-saving, drought-resistant rice. Agron J, 2022, 114: 2352–2363. [32] 黄素华, 林席跃, 雷正平, 等. 强再生力水稻品种碳氮营养与激素生理特征研究. 作物学报, 2021, 47: 2278–2289. Huang S H, Lin X Y, Lei Z P, Ding Z S, Zhao M. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability. Acta Agron Sin, 2021, 47: 2278–2289 (in Chinese with English abstract). [33] Zhang Q, Liu X C, Yu G L, et al. Agronomic and physiological characteristics of high-yielding ratoon rice varieties. Agron J, 2021, 113: 5063–5075. [34] 王若涵. 水肥耦合对杂交中稻生理特性及氮肥利用率的影响. 华中农业大学硕士学位论文, 湖北武汉, 2009. Wang R H. Effects of Water and Fertilizer Coupling on Growth and Physiological Characteristics of Hybrid Mid-Rice and Nitrogrnous Fertilizer Use Efficency. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2009 (in Chinese with English abstract). [35] 郑华斌, 陈其敏, 陈元伟, 等. 节水减氮对再生稻和双季稻周年产量及氮肥利用效率的影响. 生态学杂志, 2019, 38: 2023–2029. Zheng H B, Chen Q M, Chen Y W, et al. Effects of water-saving and nitrogen-reducing on annual yield and nitrogen use efficiency of ratoon rice and double rice. Chin J Ecol, 2019, 38: 2023–2029 (in Chinese with English abstract). [36] 关于全面构建节水制度政策体系的意见.水利部发展研究中心, 2025-05-07. https://www.waterinfo.com.cn/xsyj/zcjw/zycm/202505/t20250507_36845.html. Opinions on the Comprehensive Construction of a Water-Saving Institutional and Policy Framework. Development Research Center, Ministry of Water Resources of China, 2025-05-07. https://www.waterinfo.com.cn/xsyj/zcjw/zycm/202505/t20250507_36845.html (in Chinese). [37] 彭春瑞, 王书华, 涂田华, 等. 优质稻优质丰产协同栽培技术策略. 江西农业学报, 2020, 32(1): 1–6. Peng C R, Wang S H, Tu T H, et al. Cooperative cultivation technical strategies of high quality and yield for high quality rice. Acta Agric Jiangxi, 2020, 32(1): 1–6 (in Chinese with English abstract). [38] Xiong L, Liu Z B, Wang P, et al. Progress and challenges of rice ratooning technology in Jiangxi Province, China. Crop Environ, 2023, 2: 87–91. [39] Yang C, Yang D S, Xiang H S, et al. Varietal improvement is a feasible approach for achieving high yield and superior quality simultaneously in ratoon rice. Field Crops Res, 2025, 322: 109772. [40] 沈泓, 姚栋萍, 吴俊, 等. 灌浆期不同时段高温对稻米淀粉理化特性的影响. 中国水稻科学, 2022, 36: 377–387. Shen H, Yao D P, Wu J, et al. Effects of high temperature in various phases of grain filling on rice starch physicochemical properties. Chin J Rice Sci, 2022, 36: 377–387 (in Chinese with English abstract). [41] 肖无为, 朱辰光, 王飞, 等. 再生稻稻米品质研究进展. 中国水稻科学, 2025, 39: 33–46. Xiao W W, Zhu C G, Wang F, et al. Research progress on the rice quality of ratoon rice. Chin J Rice Sci, 2025, 39: 33–46 (in Chinese with English abstract). [42] Yao D P, Wu J, Luo Q H, et al. Influence of high natural field temperature during grain filling stage on the morphological structure and physicochemical properties of rice (Oryza sativa L.) starch. Food Chem, 2020, 310: 125817. [43] Fitzgerald M A, McCouch S R, Hall R D. Not just a grain of rice: the quest for quality. Trends Plant Sci, 2009, 14: 133–139. [44] 韦还和, 马唯一, 左博源, 等. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展. 中国水稻科学, 2024, 38: 350–363. Wei H H, Ma W Y, Zuo B Y, et al. Research progress in the effect of salinity, drought, and their combined stresses on rice yield and quality formation. Chin J Rice Sci, 2024, 38: 350–363 (in Chinese with English abstract). [45] Mumtaz M Z, Saqib M, Abbas G, et al. Drought stress impairs grain yield and quality of rice genotypes by impaired photosynthetic attributes and K nutrition. Rice Sci, 2020, 27: 5–9. [46] Xu Y J, Gu D J, Li K, et al. Response of grain quality to alternate wetting and moderate soil drying irrigation in rice. Crop Sci, 2019, 59: 1261–1272. [47] 刘凯, 张耗, 张慎凤, 等. 结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因. 作物学报, 2008, 34: 268–276. Liu K, Zhang H, Zhang S F, et al. Effects of soil moisture and irrigation patterns during grain filling on grain yield and quality of rice and their physiological mechanism. Acta Agron Sin, 2008, 34: 268–276 (in Chinese with English abstract). |
| [1] | 李子翔, 黄绒, 王志超, 李鸿雁, 谭俊行, 程宇, 杜雪竹, 盛锋. 聚-γ-谷氨酸对直播稻抗倒伏性的影响[J]. 作物学报, 2025, 51(6): 1654-1664. |
| [2] | 熊强强, 孙长辉, 顾雯霏, 陆彦尧, 周年兵, 郭保卫, 刘国栋, 魏海燕, 朱金燕, 张洪程. 基于生育期、产量和品质对70份粳糯品种(系)的综合评价[J]. 作物学报, 2025, 51(3): 728-743. |
| [3] | 郭春林, 林满红, 陈婷, 陈鸿飞, 林文芳, 林文雄. 根际微生物响应再生稻衰老的演变特征及其延效机制[J]. 作物学报, 2024, 50(8): 2039-2052. |
| [4] | 唐承翰, 陈惠哲, 叶天承, 张玉屏, 向镜, 张义凯, 王志刚, 王亚梁. 机插种植均匀度对水稻产量构建及品质形成的影响[J]. 作物学报, 2024, 50(10): 2625-2636. |
| [5] | 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892. |
| [6] | 陶钰, 姚宇, 王坤庭, 邢志鹏, 翟海涛, 冯源, 刘秋员, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 穗肥氮素用量与结实期遮光复合作用对常规粳稻品质的影响[J]. 作物学报, 2022, 48(7): 1730-1745. |
| [7] | 袁珅, 彭少兵. 再生稻头季和再生季稻米重金属含量的比较研究[J]. 作物学报, 2022, 48(7): 1822-1831. |
| [8] | 胡雅杰, 余恩唯, 丛舒敏, 李娈, 薛建涛, 夏陈钰, 郭保卫, 邢志鹏. 结实期动态温度对软米粳稻产量和品质的影响[J]. 作物学报, 2022, 48(12): 3155-3165. |
| [9] | 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻产量、品质及氮素吸收性状的相互关系分析[J]. 作物学报, 2021, 47(5): 904-914. |
| [10] | 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289. |
| [11] | 韩展誉,管弦悦,赵倩,吴春艳,黄福灯,潘刚,程方民. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响[J]. 作物学报, 2020, 46(7): 1087-1098. |
| [12] | 苏达,吴良泉,Søren K. Rasmussen,周庐建,潘刚,程方民. 磷营养对水稻籽粒锌生物有效性的影响及其与植酸等磷酸肌醇谱含量的关系[J]. 作物学报, 2020, 46(02): 228-237. |
| [13] | 唐健,唐闯,郭保卫,张诚信,张振振,王科,张洪程,陈恒,孙明珠. 氮肥施用量对机插优质晚稻产量和稻米品质的影响[J]. 作物学报, 2020, 46(01): 117-130. |
| [14] | 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769. |
| [15] | 韩超,许方甫,卞金龙,徐栋,裘实,赵晨,朱盈,刘国栋,张洪程,魏海燕. 淮北地区机械化种植方式对不同生育类型优质食味粳稻产量及品质的影响[J]. 作物学报, 2018, 44(11): 1681-1693. |
|
||