欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (03): 419-424.

• 研究论文 • 上一篇    下一篇

应用数字图像技术估测冬小麦冠层生物量垂直分布特征的研究

单成钢1,2;廖树华1 ;龚宇1;梁振兴1;王璞1,*   

  1. 1中国农业大学农学与生物技术学院,北京100094;2山东省农业科学院原子能农业应用研究所,山东济南250100
  • 收稿日期:2006-01-17 修回日期:1900-01-01 出版日期:2007-03-12 网络出版日期:2007-03-12
  • 通讯作者: 王璞

Application of Digital Image Processing for Determination of Vertical Distribution of Biomass in the Canopy of Winter Wheat

SHAN Cheng-Gang 1,2;LIAO Shu-Hua 1;GONG Yu 1; LIANG Zhen-Xing 1;WANG Pu 1,*   

  1. 1 College of Agronomy and Bio-technology , China Agricultural University, Beijing 100094; 2 Institute for Application of Atomic Energy, Shandong Academy of Agricultural Sciences , Jinan 250100, Shandong, China
  • Received:2006-01-17 Revised:1900-01-01 Published:2007-03-12 Published online:2007-03-12
  • Contact: WANG Pu

摘要:

用数字图像技术研究了冬小麦冠层生物量的垂直分布。表明用一行小麦图像比多行小麦图像估测小麦生物量能更好地满足线性回归关系,估测效果更佳,以此为基础进一步研究了分层像素数估测小麦冠层分层现存生物量和有效生物量的方法。利用分层绿色像素数(LGPN)指标定性分析了不同栽培模式下冬小麦群体有效生物量的垂直分布和动态变化,并确定了基于图像特征的可用于定量分析的小麦群体垂直分布指数(I)。

关键词: 数字图像, 冬小麦冠层, 生物量, 垂直分布

Abstract:

The vertical distribution of biomass, which indicated the characteristics of quantity and structure in canopy, is an important index of diagnosis and management for crop growth. However, traditional measurements are time-consuming and labor intensive and can result in significant mechanical damage to plants, such as layer upon layer cut method. The image processing technologies, which may provide more efficient and no-destructive methods for measurement, have recently appeared in the agronomic literature. This paper focused on the determination of biomass vertical distribution in the canopy of winter wheat, based on digital image processing technology. The digital images (2 272 by 1 706 pixels) were taken with digital camera of winter wheat rows in the field plots of an experiment during the 2004 to 2005 growing season. Excess Green image segmentation method was used to separate wheat population and background. At the same time, relative biomass weight was measured using layer upon layer cut method, and the distance between neighbor layers was 20 cm. The image pixels of a single row and biomass could fit regression relationship (R2D1=0.9682) much better than those of multiple rows and biomass. The regression relationship between the image pixels and dry matter weight much better than those and fresh matter weight. The estimating functions were established between biomass and pixel number (PN) in each layer (Y = 6×10-5X + 24.72), and between effective biomass and green pixel number (LGPN) in each layer (Y = 7×10-5X + 25.09), and meanwhile the vertical distribution of effective biomass and dynamic of winter wheat canopy under different management conditions was analyzed qualitatively with LGPN. Finally, an index, namely, image pixel vertical distribution index (I), with which vertical distribution of canopy biomass of winter wheat could be analyzed quantitatively, was determined. The results show that the application of digital image processing has significant potential for determination of vertical distribution of biomass in the canopy of winter wheat, and is one of the quick, real time and almost no-destructive measurements.

Key words: Digital image, Canopy of winter wheat, Biomass, Vertical distribution

[1] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[2] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[3] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[4] 茹晓雅,李广,陈国鹏,张统帅,闫丽娟. 不同降水年型下水氮调控对小麦产量及生物量的影响[J]. 作物学报, 2019, 45(11): 1725-1734.
[5] 武海霞,郭丽丽,郝立华,张浩,王清涛,程东娟,彭正萍,李菲,张茜茜,李树彬,徐明,郑云普. 水分和CO2浓度对冬小麦气孔特征、气体交换参数和生物量的影响[J]. 作物学报, 2018, 44(10): 1570-1576.
[6] 陈昱利,杨平,张文宇,张伟欣,诸叶平,李世娟,巩法江,毕海滨,岳霆,曹宏鑫. 基于生物量的冬小麦穗部主要形态参数模型[J]. 作物学报, 2017, 43(03): 399-406.
[7] 陈昱利,杨平,张文宇,张伟欣,诸叶平,李世娟,巩法江,毕海滨,岳霆,曹宏鑫. 基于生物量的冬小麦越冬前植株地上部形态结构模型[J]. 作物学报, 2016, 42(05): 743-750.
[8] 张文宇, 张伟欣, 葛道阔, 曹宏鑫, 刘岩, 宣守丽, 傅坤亚, 冯春焕, 陈魏涛. 基于生物量的油菜主茎叶片形态参数模拟研究[J]. 作物学报, 2015, 41(09): 1435-1444.
[9] 叶德练,齐瑞娟,管大海,李建民,张明才,李召虎. 免耕冬小麦田土壤微生物特征和土壤酶活性对水分调控的响应[J]. 作物学报, 2015, 41(08): 1212-1219.
[10] 李华伟,司纪升,徐月,李升东,吴建军,王法宏. 栽培技术优化对冬小麦根系垂直分布及活性的调控[J]. 作物学报, 2015, 41(07): 1136-1144.
[11] 齐波,张宁, 赵团结,邢光南,赵晋铭*,盖钧镒. 利用高光谱技术估测大豆育种材料的叶面积指数[J]. 作物学报, 2015, 41(07): 1073-1085.
[12] 张伟欣,曹宏鑫,朱艳,刘岩,张文宇,陈昱利,傅坤亚. 基于生物量的油菜越冬前植株叶片空间形态结构模型[J]. 作物学报, 2015, 41(02): 318-328.
[13] 宋为超,刘春雨,徐娇,睢宁,陈兵林,周治国. 初花后土壤碱解氮浓度对棉花生物量和氮素累积特征的影响[J]. 作物学报, 2013, 39(07): 1257-1265.
[14] 李海波,杨兰芳,李亚东. 土壤砷对大豆主要性状及叶绿素含量的影响[J]. 作物学报, 2013, 39(07): 1303-1308.
[15] 吴琼,齐波,赵团结,姚鑫锋,朱艳,盖钧镒. 高光谱遥感估测大豆冠层生长和籽粒产量的探讨[J]. 作物学报, 2013, 39(02): 309-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!