欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (04): 653-661.doi: 10.3724/SP.J.1006.2008.00653

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米茎秆弯曲性能与抗倒能力的研究

勾玲1,3;赵明2,*;黄建军3;张宾1;李涛1;孙锐1   

  1. 1 中国农业大学农学与生物技术学院, 北京100094; 2 中国农业科学院作物科学研究所, 北京100081; 3 石河子大学新疆兵团绿洲生态农业重点实验室, 新疆石河子832003
  • 收稿日期:2007-06-06 修回日期:1900-01-01 出版日期:2008-04-12 网络出版日期:2008-04-12
  • 通讯作者: 赵明

Bending Mechanical Properties of Stalk and Lodging-Resistance of Maize (Zea mays L.)

GOU Ling13,ZHAO Ming2*,HUANG Jian-Jun3,ZHANG Bin1,LI Tao1,SUN Rui1   

  1. 1 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081; 3 Key Laboratory of Oasis Ecology Agriculture of Xinjiang Construction Crops, Shihezi University, Shihezi 832003, Xinjiang, China
  • Received:2007-06-06 Revised:1900-01-01 Published:2008-04-12 Published online:2008-04-12
  • Contact: ZHAO Ming

摘要: 为探讨不同玉米品种茎秆抗倒伏相关的力学特点, 选用不同抗倒性品种登海3719、京科519和农大108, 设置3.00、5.25、7.50、9.25和12.00万 hm-2 5个密度, 分别于玉米抽雄前和蜡熟期取样, 用WDW3020型电子万能试验机对茎秆第3、5、7节间进行悬臂梁弯曲试验, 同时测定节间形态特征。结果表明, 随密度的增加, 茎秆基部节间直径变细、节间长度增长。品种间有一定的差异, 在3个品种中登海3719的平均直径和长度均低于其他2个品种; 品种间茎秆惯性矩也有较大差异。基部节间弹性模量、最大抗弯应力均随生育进程而增加, 但随群体密度的增加和节位的上升而逐渐降低, 登海3719在两个生育期均为最大, 且随密度增加的下降幅度较小。以京科519最低, 其对密度反应较敏感, 下降幅度大, 易发生倒伏。在玉米抽雄期, 基部节间平均弹性模量为40.0 MPa, 最大抗弯应力为2.8 MPa, 可能是茎秆抗折力学指标的下限。茎秆弹性模量与最大抗弯应力极显著相关, 茎秆直径与弹性模量和最大抗弯应力在抽雄前显著正相关, 而到蜡熟期相关不显著。它们与田间倒伏率呈极显著负相关。茎秆弯曲弹性模量反映茎秆的耐密能力, 茎秆最大抗弯应力反映品种茎秆的抗折能力, 而茎秆直径不能作为评价茎秆抗弯强弱的主要指标。玉米抽雄前期与蜡熟期茎秆抗弯性状的变化规律基本一致, 因此利用抽雄前茎秆基部弯曲力学性能鉴定与评价玉米茎秆抗倒、耐密性是可行的。

关键词: 玉米茎秆, 弯曲试验, 弹性模量, 抗弯强度, 种植密度

Abstract: High plant density is one of the cultivation measures for high yield in maize production, but may risk lodging during the growing period. The occurrence of lodging is highly related to stalk mechanical intensity in addition to plant height and stalk diameter. Some investigators have measured the indices of stalk intensity in maize, but we believe that the knowledge on bending properties of maize stalk will give more mechanical explanation to lodging-resistance. In the present experiment, we employed three maize cultivars, Denghai 3719 (high density-tolerant and lodging resistant), Jingke 519 (low density-tolerante and lodging resistant), and Nongda 108 (moderate density-tolerant), and used universal hydraulic test equipment to investigate the Yong’s modulus and the bending strength of stalk under five densities (3.00, 5.25, 7.50, 9.25, and 12.00 × 104 plants ha-1, respectively). The basal 1st to 8th internodes of 3–8 plants from each treatment were sampled at pre-tasselling and dough stages, respectively. The parameters of stem morphologic trait showed thinned internode diameter and longer internode at basal stem accompanying with the increasing of maize planting density in all three cultivars, in which Denghai 3719 had the smallest values (internode diameter and length). The moment of inertia of maize stalk varied among cultivars and among internodes, and close related to internode diameter. The Yong’s modulus and bending strength of maize stalk increased in the process of growth period, but decreased significantly with the increasing of planting density and the rising of internode position. The Yong’s modulus and the stalk bending strength on the average of the 3rd and 5th internodes were 72.32 MPa and 4.05 MPa in Denghai 3719 at pre-tasselling stage, while only 42.31 MPa and 2.80 MPa in Jingke 519 which were the stalk broken thresholds in high densities (7.5–12.0 × 104 plants ha-1). They went up by 100.8% and 129.3% in Denghai 3719 and 59.1% and 105.7% in Jingke 419, respectively at dough stage. The results imply that the probable critical parameters of stalk broken are 40.0 MPa for Yong’s modulus and 2.8 MPa for maximum bending strength at basal internodes at pre-tasselling stage in maize. The Yong’s modulus of stalk was significantly correlated (P<0.01) with the bending strength. While the diameter of internodes was positively correlated (P<0.01) with Yong’s modulus and bending strength of stalk at pre-tasselling stage, but not at dough stage. They were negatively correlated at P<0.01 with field lodging per-centage. The Yong’s modulus could reflect the ability of tolerance to high densities of stalk, and the bending strength of stalk to lodging resistance, however, the diameter of internodes was not a good indicator for evaluating stalk mechanical strength. The bending mechanical properties of different cultivars under different planting densities showed similar trends at pre-tasselling and dough stages, indicating the possibility of selection and evaluation for lodging-resistant maize cultivars at early developmental stage.

Key words: Maize stalk, Bending experiment, Yong’s modulus, Bending strength, Planting density

[1] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[2] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[3] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[4] 张金丹, 范虹, 杜进勇, 殷文, 樊志龙, 胡发龙, 柴强. 小麦玉米同步增密有利于优化种间关系而提高间作产量[J]. 作物学报, 2021, 47(12): 2481-2489.
[5] 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595.
[6] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
[7] 王士红,杨中旭,史加亮,李海涛,宋宪亮,孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407.
[8] 柏延文,杨永红,朱亚利,李红杰,薛吉全,张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响[J]. 作物学报, 2019, 45(12): 1868-1879.
[9] 万泽花,任佰朝,赵斌,刘鹏,董树亭,张吉旺. 不同熟期夏玉米品种籽粒灌浆与脱水特性及其密度效应[J]. 作物学报, 2018, 44(10): 1517-1527.
[10] 侯贤清,牛有文,吴文利,徐金鹏,时龙,唐少颖,马旭,李荣. 不同降雨年型下种植密度对旱作马铃薯生长、水分利用效率及产量的影响[J]. 作物学报, 2018, 44(10): 1560-1569.
[11] 李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响[J]. 作物学报, 2018, 44(02): 278-287.
[12] 任佰朝,李利利,董树亭,刘鹏,赵斌,杨今胜,王丁波,张吉旺. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响[J]. 作物学报, 2016, 42(12): 1864-1872.
[13] 牛玉萍,陈宗奎,杨林川,罗宏海*,张旺锋. 干旱区滴灌模式和种植密度对棉花生长和产量性能的影响[J]. 作物学报, 2016, 42(10): 1506-1515.
[14] 卢霖,董志强*,董学瑞,李光彦. 乙矮合剂对不同密度夏玉米花粒期不同部位叶片衰老特性的影响[J]. 作物学报, 2016, 42(04): 561-573.
[15] 卢霖,董志强,董学瑞,焦浏,李光彦,高娇. 乙矮合剂对不同密度夏玉米花粒期叶片氮素同化与早衰的影响[J]. 作物学报, 2015, 41(12): 1870-1879.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!