欢迎访问作物学报,今天是 2025年1月7日 星期二

作物学报 ›› 2008, Vol. 34 ›› Issue (11): 1921-1928.doi: 10.3724/SP.J.1006.2008.01921

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

油菜油体钙蛋白基因BnClo1的克隆和表达

丁勇1,2;陈庆波1;徐春雷1;常玮3;甘莉1,*   

  1. 1华中农业大学作物遗传改良国家重点实验室,湖北武汉430070;2西南林学院资源学院,云南昆明 650224;3中国科学院昆明植物研究所,云南昆明650204
  • 收稿日期:2008-03-09 修回日期:1900-01-01 出版日期:2008-11-13 网络出版日期:2008-09-06
  • 通讯作者: 甘莉
  • 基金资助:

    国家自然科学基金项目(30170600);湖北省自然科学基金项目(2001ABD113)

Cloning and Expression of BnClo1 Gene from Brassica napus

DING Yong12,CHEN Qing-Bo1,XU Chun-Lei1,CHANG Wei3,GAN Li1*   

  1. 1 National Key Laboratory of Crop Genetic Improement, Huazhong Agricultural University, Wuhan 430070, Hubei; 2 School of Natural Resources, Southwest Forestry College, Kunming 650224, Yunnan; 3 Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, China
  • Received:2008-03-09 Revised:1900-01-01 Published:2008-11-13 Published online:2008-09-06
  • Contact: GAN Li

摘要:

应用同源序列克隆法设计同源简并引物,结合RT-PCR和RACE-PCR技术从甘蓝型油菜中分离克隆了编码28.1 kD油体钙蛋白( caleosin)的基因BnClo1。其全长1 058 bp的BnClo1 mRNA( GenBank中序列号为AY966447)包含完整的开放阅读框和3'末端Poly( A)尾巴结构,染色体DNA结构上含6个外显子和5个内含子。Northern杂交结果表明油菜中BnClo1在种子形成中期开始丰富表达,在种子形成后期,即种子开始脱水成熟时期,高量稳定地表达。半定量PCR结果显示BnClo1在油菜种子吸水膨胀后前2 d的茎中明显表达。证明在油菜种子发育期间,BnClo1对mRNA的转录表达是由胚胎发育来调控的,具有显著的时空特性,并与油体的形成和积累密切有关。推测的caleosin蛋白为245个氨基酸残基( GenBank中序列号为AAY40837)组成的两性蛋白质,主要含3个结构域即由N末端1~16位氨基酸残基组成的α-螺旋和17~61位氨基酸残基组成的强亲水性的随机卷曲构成的N-末端亲水性结构域;由80~120位氨基酸残基组成的中间疏水性结构域和C-末端亲水性结构域。N-末端亲水性结构域包含一个潜在的结合Ca2+的EF-手结构。中间疏水性结构域包含一个潜在的脯氨酸-结( Proline-Knot)模体,在92~114位氨基酸残基组成的α-螺旋跨膜区域,推测在caleosin蛋白与单层磷脂层和油体锚定结合上及增加种子油体的稳定性上起着重要的作用。

关键词: 油体钙蛋白, RACE, 基因克隆, 同源简并引物, 序列分析, Northern杂交

Abstract:

Triacylglycerols (TAGs) is stored in seeds as a nutrient for germination and postgerminative growth of seedlings. TAGs storage is confined to discrete spherical organelles called oil bodies. Plant seed oil bodies comprise a matrix of TAGs surrounded by a monolayer of phospholipids embedded with abundant oleosins and some minor proteins. Three minor proteins, temporarily termed caleosin(Sop1), steroleosin(Sop2) and Sop3, have been identified in oil bodies of diverse species. With the rapid development of molecular biology, the more wide application of rape seed oil bodies on genetic engineering, the more attention to Sops 1–3. To reveal the biological function and provide scientific basis of application on plant genetic engineering for rape caleosin proteins, a gene BnClo1 encoding caleosin protein was isolated by homology-based candidate gene method combined with RT-PCR and RACE-PCR from B. nupus. The full-length cDNA clone (accession No. AY966447 in GenBank) comprised 1058 nucleotides consisting of a 36-nucleotide 5’-untranslated region, an open reading frame of 738 nucleotides, and a 284-nucleotide 3’-untranslated region. The open reading frame encoded a putative caleosin protein. The corresponding genomic sequence (1 676 nucleotides) of BnClo1 was also obtained by PCR cloning (accession no. DQ140380 in GenBank). Rapeseed genomic sequence of BnClo1 comprised six exons with five introns conservatively inserted in their coding regions. The splicing model of introns accords with the GT/AG rule in eukaryotes. In B. napus, BnClo1 was expressed in a spatially co-cordinated and temporally regulated manner. BnClo1 expression appeared to be highly regulated through embryogenesis. Northern blot demonstrated that BnClo1 mRNA was not detected in the earliest embryos, i.e. 20 DAF (day after flower) and presented in maturing rapeseeds at approximately 25 DAF. BnClo1 expression increased dramatically in the latter stages of embryogenesis, and this mRNA maintained a substantial level thereafter until the rapeseeds started to desiccate in a mode similar to oleosin mRNA. There was a single size class of BnClo1 transcript whose expression was regulated through embryogenesis. Semi-quantitative PCR showed that caleosin mRNA was only detected in the stem at two days after germination of rapeseeds. It is presumably revealed that BnClo1 is transcribed along with oleosin and steroleosin genes during seed maturation when oil bodies are actively assembled in diverse species. The deduced polypeptide of the rapeseed clone comprises 245 amino acid residues with molecular weight of 28.1 kD. Caleosin protein documented GenBank with accession no. AAY40837 might be an amphipathic protein associated with rapeseed oil bodies. Hydropathy plot and secondary structure analysis suggested that caleosin is comprised of three distinct structural domains: an N-terminal hydrophilic domain with a single Ca2+-binding EF-hand motif, a central hydrophobic anchoring domain of some 40 residues, and a C-terminal hydrophilic domain with conserved protein kinase phosphorylation sites. In addition, the central hydrophobic domain of caleosin also contained a proline-rich region with the potential to form a proline knot motif of the type that appears to be important in the lipid-body targeting. A potential amphipathic alpha helix, e.g. residues 92–114 of caleosin might play a role in their binding both of single layer membrane and lipid bodies. Caleosin protein closely integrating with lipid bodies through embryogenesis plays an important role in the biogenesis process of oil bodies. With calcium-binding, the physiological function of caleosin protein may be responsible for decomposition of oil bodies and mobilization of triglycerides during seed germination.

Key words: Caleosin, RACE, Gene cloning, Homology-Degenerate primer, Sequence analysis, Northern blotting

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[4] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[5] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[6] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[7] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[8] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[9] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[10] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[11] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[12] 冯韬,官春云. 甘蓝型油菜芸薹素唑耐受因子(BnaBZR1/BnaBES1)全长CDS克隆与生物信息学分析[J]. 作物学报, 2018, 44(12): 1793-1801.
[13] 马晨雨,詹为民,李文亮,张梦迪,席章营. 玉米ZmNAOD基因的克隆与功能分析[J]. 作物学报, 2018, 44(10): 1433-1441.
[14] 刘朝显, 王久光, 梅秀鹏, 余婷婷, 王国强, 周练, 蔡一林. 玉米胚乳母本印记基因ZmVIL1的克隆及印记特性分析[J]. 作物学报, 2018, 44(03): 376-384.
[15] 梁云飞, 张林成, 蒲全明, 雷镇泽, 施松梅, 姜宇鹏, 任雪松, 高启国. 甘蓝转录因子BoLH27的克隆与转基因甘蓝的表型分析[J]. 作物学报, 2018, 44(03): 397-404.
Viewed
Full text
657
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 657

  From Others local
  Times 4 653
  Rate 1% 99%

Abstract
281
Just accepted Online first Issue
0 0 281
  From Others local
  Times 50 231
  Rate 18% 82%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!