欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2059-2069.doi: 10.3724/SP.J.1006.2008.02059

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

大豆育成品种农艺性状QTL与SSR标记的关联分析

张军1,2;赵团结1;盖钧镒1,*   

  1. 1南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京210095;2滨州职业学院,山东滨州256603
  • 收稿日期:2008-04-08 修回日期:2008-07-13 出版日期:2008-12-12 网络出版日期:2008-10-10
  • 通讯作者: 盖钧镒
  • 基金资助:

    国家重点基础研究发展规划(973规划)项目(2006CB101708);国家高技术研究发展计划(863计划)项目(2006AA100104);国家自然科学基金项目(30490250,30671266);教育部高等学校创新引智计划(B08025);农业部公益性行业专项(200803060)

Association Analysis of Agronomic Trait QTLs with SSR Markers in Released Soybean Cultivars

ZHANG Jun12,ZHAO Tuan-Jie1,GAI Jun-Yi1*   

  1. 1Soybean Research Institute, National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu; 2Binzhou Vocational College, Binzhou 256603, Shandong, China
  • Received:2008-04-08 Revised:2008-07-13 Published:2008-12-12 Published online:2008-10-10
  • Contact: GAI Jun-Yi

摘要:

利用85个SSR标记,对大豆育成品种群体(190份代表性材料)的基因组进行扫描,在检测群体结构基础上搜索连锁不平衡位点,并采用TASSEL软件的GLM方法对11个大豆农艺性状QTL进行关联分析。结果表明:(1) 在公共图谱上共线性或非共线性的SSR位点组合均广泛存在连锁不平衡(LD),但不平衡程度D′>0.5的组合数只占总位点组合的1.71%,共线位点D′值随遗传距离衰减较快;(2) SSR数据遗传结构分析表明,育成品种群体由7个亚群体组成,矫正后全群体共有45个位点累计136个位点(次)与11个大豆农艺性状QTL关联,其中22个位点(次)与家系连锁定位的QTL区间相重,有43个位点(次) 2年重复出现;(3) 一些标记同时与2个或多个性状关联,可能是性状相关或一因多效的遗传基础;(4) 育成品种群体关联位点与地方品种群体和野生群体只有少数相同,群体间育种性状的遗传结构有相当大差异;(5) 发掘出农艺性状优异等位变异及其载体品种,包括增效最大的产量等位变异Satt347-300 (+932 kg hm-2,中豆26),生物量等位变异Satt365-294(+3 123 kg hm-2,黄毛豆),蛋白质含量等位变异Be475343-198 (+0.41%,淮豆4号),脂肪含量等位变异Satt150-273 (+2.32%,科丰15)等。在此基础上作了设计育种的探讨。

关键词: 大豆育成品种, 农艺性状, SSR标记, 关联分析, 优良等位变异, 设计育种

Abstract:

The genotyping data of 85 simple-sequence repeat (SSR) markers on released cultivar population (RCP) (a representative sample with 190 accessions) were obtained and analyzed for LD of pairwise loci and population structure, and then for association between SSR loci and 11 soybean agronomic traits under TASSEL GLM (General linear model) program. The results showed that: (1) LD was detected extensively not only among syntenic markers but also among nonsyntenic ones, while the loci pairs with D′>0.5 accounted for only 1.71% of the total ones. The syntenic D′ value attenuated fastly along with the increase of genetic distance. (2) Genetic structure analysis showed that RCP was composed of seven subpopulations. The 45 SSR loci with a total of 136 loci (time) were found to be associated with 11 agronomic traits in the RCP. Among those, 22 loci (times) were consistent with mapped QTLs from family-based linkage mapping procedure and 43 loci (times) were consistently detected in two experiment years. (3) There also found a certain number of loci associated simultaneously with two or more traits, which might be the genetic reason of correlation among traits as well as the pleiotropic effects of gene(s). (4) There found only a few association loci in released cultivar population coincided with those in landrace and wild populations, indicating the large difference of genetic structure between the populations. (5) The elite alleles of the agronomic traits along with their carriers were detected, such as the allele Satt347-300 for largest positive yield effect (+932 kg hm-2 for Zhongdou 26),Satt365-294 for biomass(+3 123 kg hm-2 for Huangmaodou),Be475343-198 for protein content (+0.41% for Huaidou 4),Satt150-273 for oil content (+2.32% for Kefeng 15), and were used to illustrate their potential in breeding programs.

Key words: Released soybean cultivar, Agronomic trait, SSR marker, Association analysis, Elite allele, Breeding by design

[1]Flint-Garcia S A, Thuillet A C, Yu J M, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population: A high resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054-1064
[2]Eizenga G C, Agrama H A, Lee F N, Yan W, Jia Y. Identify-ing novel resistance genes in newly introduced blast resistant rice germplasm. Crop Sci, 2006, 46: 1870-1878
[3]Maccaferri M, Sanguineti M C, Noli E, Tuberosa R. Popula-tion structure and long-range linkage disequilibrium in a du-rum wheat elite collection. Mol Breed, 2005, 15: 271-289
[4]Roy J K, Bandopadhyay R, Rustgi S, Balyan H S, Gupta P K. Association analysis of agronomically important traits using SSR, SAMPL and AFLP markers in bread wheat. Curr Sci, 2006, 90: 683-689
[5]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356
[6]Wilson L M, Whitt S R, Ibá?ez A M, Rocheford T R, Good-man M M, Buckler E S. Dissection of maize kernel composi-tion and starch production by candidate gene association. Plant Cell, 2004, 16: 2719-2733
[7]Ivandic V, Hackett C A, Nevo E, Keith R, Thomas W T B, Forster B P. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: Associations with ecology, geography and flowering time. Plant Mol Biol, 2002, 48: 511-527
[8]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Niel-sen D, Buckler E S. Dwarf8 polymorphisms associate with varia-tion in flowering time. Nat Genet, 2001, 28: 286-289
[9]Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cul-tivars. Genetics, 2006, 172: 1165-1177
[10]Wen Z-X(文自翔), Zhao T-J(赵团结), Zheng Y-Z(郑永战), Liu S-H(刘顺湖), Wang C-E(王春娥), Wang F(王芳), Gai J-Y(盖钧镒). Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: I. Population structure and associated markers. Acta Agron Sin (作物学报), 2008, 34(7): 1169-1178 (in Chinese with English abstract)
[11]Aljanabi S M, Forget L, Dookun A. An improved and rapid protocol for the isolation of polysaccharide- and polyphe-nol-free sugarcane DNA. Plant Mol Biol Rep, 1999, 17: 1-8
[12]Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, Van Toai T T, Lohnes D G, Chung J, Specht J E. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464-1490
[13]Farnir F, Coppieters W, Arranz J J, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M. Exten-sive genome-wide linkage disequilibrium in cattle. Genome Res, 2000, 10: 220-227
[14]Pritchard J K, Stephens M, Donnelly P. Inference of popula-tion structure using multilocus genotype data. Genetics, 2000, 155: 945-959
[15]Edward Buckler Lab. Maize Diversity Research (2007-01-30) http://www.maizegenetics.net/bioinformatics/tassel
[2007-03-20]
[16]Wen Z-X(文自翔), Zhao T-J(赵团结), Zheng Y-Z(郑永战), Liu S-H(刘顺湖), Wang C-E(王春娥), Wang F(王芳), Gai J-Y(盖钧镒). Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: Ⅱ. Ex-ploration of elite alleles. Acta Agron Sin (作物学报), 2008, 34(8): 1339-1349 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[4] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[5] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[6] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[7] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[8] 赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应[J]. 作物学报, 2021, 47(9): 1824-1833.
[9] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[10] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[11] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[12] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390.
[13] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!