欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (11): 2085-2090.doi: 10.3724/SP.J.1006.2009.02085

• 耕作栽培·生理生化 • 上一篇    下一篇

三系杂交棉花粉育性对高温和低温胁迫的反应

倪密1,王学德1,*,张昭伟1,朱云国2,张海平1,邵明彦1,袁淑娜1,刘英新1,文国吉1   

  • 收稿日期:2009-03-23 修回日期:2009-06-25 出版日期:2009-11-12 网络出版日期:2009-08-07
  • 通讯作者: 王学德, E-mail: xdwang@zju.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划[2004CB11730502(1)],国家自然科学基金项目(30800694),浙江省重点科技项目(2008C22087),自然科学基金项目(Y306093)资助。

Reaction of Pollen Fertility to High or Low Temperature Stresses in CMS-Based Hybrid Cotton

NI Mi1,WANG Xue-De1,*,ZHANG Zhao-Wei1,ZHU Yun-Guo2,ZHANG Hai-Ping1,SHAO Ming-Yan1,YUAN Shu-Na1,LIU Ying-Xin1,WEN Guo-Ji1   

  1. 1 College of Agriculture and Biotechnology, Zhejiang University, Hanghzou 310029, China; 2 School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
  • Received:2009-03-23 Revised:2009-06-25 Published:2009-11-12 Published online:2009-08-07
  • Contact: WANG Xue-De, E-mail: xdwang@zju.edu.cn

摘要:

为研究在高温和低温胁迫条件下的三系杂交棉花粉育性稳定性问题,利用棉花细胞质雄性不育系和恢复系,配制2个三系杂交棉组合,抗浙大强恢(记作:强恢F1)和抗A×DES-HMF277(记作:弱恢F1),并以保持系(B)为对照,分别进行温室控温试验和田间自然温度试验,分析三系杂交棉对高温和低温胁迫的反应和花粉育性转换(可育至不育)的临界温度。试验表明,一般三系杂交棉的花粉育性对胁迫温度的反应比保持系敏感,常常花粉散粉少和花粉活力较低。不同三系杂交棉组合对胁迫温度的抗性存在明显差异,强恢F1明显高于弱恢F1,与保持系的育性相似,可育花粉率和自交结铃率较高,不孕籽率较低。经可育花粉率(Y)与温度(T)的回归分析,花粉育性转换的临界温度符合Y = a (T–Topt)2+b模型。强恢F1育性转换的上限和下限温度分别为38.0℃13.0℃,弱恢F136.0℃14.0℃,保持系为38.5℃10.0℃。与低温胁迫比较,高温胁迫在我国大部分棉区更普遍,持续时间更长,对产量影响更大。提高三系杂交棉在胁迫气温条件下的花粉育性的稳定性是近期育种的重要目标。

关键词: 棉花, 细胞质雄性不育, 气温胁迫, 育性, 临界温度

Abstract:

Planting CMS-based hybrid cotton is an important way to use cotton heterosis. Fertility of hybrid cotton pollens is influenced by cultivar, climatic conditions, management practices and pests. Among all the factors, temperature is the primary one affecting cotton growth, the following is air humidity. Stability of pollen fertility under high and low temperature stresses, associated with the heterosis expression of CMS-based hybrids, is the main point to elucidate in this study. The fertility differences between hybrids and the maintainer were compared by testing the percentage of fertile pollens in the greenhouse experiment with temperature controlled and the field experiment with natural temperature. In addition, percentage of setting bolls and percentage of aborted seeds were tested in the field experiment.Pollen fertility was checked by benzidine-Naphthol fluorescence microscopic method, while cross-pollination experiments were performed by dusting pollen obtained from corresponding restorers, then percentage of setting bolls and percentage of aborted seeds were determined by calculating the number of bolls or seeds, respectively. The critical temperatures for upper limit and lower limit were searched from different given consistent temperatures, which each temperature was kept for eight days in the greenhouse when cotton pollens turned from fertility to sterility. The results showed that the response of CMS-based hybrids to the extreme temperature stress was more sensitive than that of the maintainer, while the former usually had lower stability in pollen vitality under the stress. However, different CMS-based hybrids had various tolerances to temperature stress, for example, hybrids (F1) restored by Zheda strong restorer showed higher pollen viability, more setting bolls and less aborted seeds under the stress than others. The response of pollen fertility to air temperature had a 5-day’s delay in the field. Furthermore, the changes of maximum air temperature were more consistent with the curve of the percentage of pollen viability than those of average air temperature. It showed that the maximum air temperature for several days before anthesis affected the viability of pollen more salient. The Quadratic model [Y = a (TTopt)2+b], applied to analysis the relationship between pollen viability (Y) and temperature (T), was best described as the temperature response functions of pollen fertility. According to actual observation,combined with the predicted value from the model above, the upper and lower critical temperatures for shift of fertility were 38.0℃ and 13.0℃ for hybrids restored by Zheda strong restorer, 36.0℃ and 14.0℃ for hybrids restored by DES-HMF277, and 38.5℃ and 10.0℃ for their maintainer. Compared with the low temperature stress, in the major cotton-growing areas of China, high temperature stress was more widespread, with longer duration and greater impact on yield. Improving the pollen fertility stability of CMS-based hybrid cotton under extreme temperature stress is an important goal in recent breeding program.

Key words: Cotton, Cytoplasmic male sterility(CMS), Temperature stress, Pollen fertility, Critical temperatures


[1] Reddy K R, Reddy V R, Hodges H F.Temperature effects on early season cotton growth and development. Agron J, 1992, 84: 229-237

[2] Yu X-L(余新隆), Yi X-D(易先达). Observation of high-temperature effects on cotton anther cracking. Hubei Agric Sci (湖北农业科学), 2004, 43(2): 39 (in Chinese)

[3] Hong J-R(洪继仁). The effect of high temperature on floral organ development and growth of bolls in cotton. China Cotton (中国棉花), 1982, 9(5): 36-37 (in Chinese)

[4] Zhang X-Q(张小全), Wang X-D(王学德), Zhu Y-G(朱云国), Zhu W(朱伟), Jiang P-D(蒋培东). Breeding of Cytoplasmic male sterile line in G. barbadense and microsporogenesis cytological observation. Sci Agric Sin (中国农业科学), 2007, 40(1): 34-40 (in Chinese with English abstract)

[5] Wang X-D(王学德), LI Y-Y(李悦有). Development of transgenic restorer of cytoplasmic male sterility in upland cotton. Sci Agric Sin (中国农业科学), 2002, 35(2): 137-141 (in Chinese with English abstract)

[6] Zhang Z-L(张志良). The Instruction of Experiment about Plant Physiology (2nd edn)(植物生理学实验指导·第2版). Beijing: Higher Education Press, 1990 (in Chinese)

[7] Yan W K, Wallace D H. Simulation and prediction of plant phenology for five crops based on photoperiod by temperature interaction. Anal Bot, 1998, 81: 705-716

[8] Tollenaar M, Daynard T B, Hunter R B. Effect of temperature on rate of leaf appearance and flowering date in maize. Crop Sci, 1979, 19: 363-366

[9] Omanga P A, Summerfield R J, Qi A. Flowering of pigeonpea(Cajanus cajan L.)in Kenya: Responses of early maturing genotypes to location and date of sowing. Field Crops Res, 1995, 41: 25-34

[10]Li Z-B(李泽炳). Studies on the Photoperiod Sensitive Genic Male Sterility in Rice and Its Utilization in Breeding(光敏感核不育水稻育性转换机理与应用研究). Wuhan: Hubei Science and Technology Press, 1995 (in Chinese)

[11]Kakani V G, Reddy K R, Koti S, Wallace T P, Prasad P V V, Reddy V R, Zhao D. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Annl Bot, 2005, 96: 59-67

[12]Marshall D R, Thomson N J, Nicholls G H, Patrick C M. Effects of temperature and day length on cytoplasmic male sterility in cotton (Gossypium). Aust J Agric Res, 1974, 25: 443-447

[13]Sawan Z M, Hannaw L I, Gad-El-Karim Gh A, McCuistion W L. Relationships between climatic factors and flower and boll production in Egyptian cotton (Gossypium barbadense). J Arid Environ, 2002, 52: 499-516

[14]Sarvella P. Environmental influences on sterility in cytoplasmic male-sterile cottons. Crop Sci,1966, 6: 361-364
Zhao L-F(赵丽芬), Li Z-S(李增书), Sui S-X(眭书祥), Zhao G-Z(赵国忠), Li A-G(李爱国). Selection and utilization of cotton germplasms resources introduced from Pakistan. J Hebei Agric Sci (河北农业科学), 2008, 12(2): 88-89(in Chinese with English abstract)
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!