欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (2): 286-294.doi: 10.3724/SP.J.1006.2009.00286

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜胚色素成分的QTL定位

曲存民1;付福友1,2;刘列钊1;王家丰1;毛丽佳2;原小燕1;谌利1   

  1. 1西南大学农学与生物科技学院,重庆北碚400716;2中国科学院遗传与发育生物学研究所,北京100101
  • 收稿日期:2008-06-26 修回日期:2008-09-02 出版日期:2009-02-12 网络出版日期:2008-12-11
  • 通讯作者: 李加纳
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101604),引进国际科学技术计划(948计划)项目(2006-Q04),国家高技术研究发展计划(863计划)项目(2006AA10Z1E6)资助。

Mapping of QTL for Embryonic Pigment Components in Brassica napus

QU Cun-Min1,FU Fu-You1,2,LIU Lie-Zhao1,WANG Jia-Feng1,MAO Li-Jia2,YUAN Xiao-Yan1,CHEN Li1,LI Jia-Na1,*   

  1. 1College of Agronomy and Biotechnology, Southwest University, Beibei 400716,China;2Institute of Genetics and Developmental Biology, Chinese Academy of Sciences,Beijing 100101,China
  • Received:2008-06-26 Revised:2008-09-02 Published:2009-02-12 Published online:2008-12-11
  • Contact: LI Jia-Na

摘要:

以甘蓝型黄籽油菜GH06和甘蓝型黑籽油菜中油821为亲本杂交,后代通过一粒传法连续自交7代构建重组自交系, 2007年分别在重庆市北碚区和万州区两个试验基地种植重组自交系群体, 利用本实验室已构建的遗传连锁图谱和复合区间作图法(CIM), 分析种胚色素的4种主要成分的QTL。结果共检测到31QTL, 分别位于14个不同的连锁群, 其中5个花色素含量有QTL, 分别位于第15101620连锁群,单个QTL解释表型变异的6.08%~11.67%10个类黄酮含量有QTL, 分别位于第1367122025连锁群,单个QTL解释表型变异的4.48%~11.10%8个总酚含量有QTL, 分别位于第12121620连锁群,单个QTL解释表型变异的5.24%~10.37%8个黑色素含量检测到QTL, 分别位于第5810121422连锁群,单个QTL解释表型变异的5.44%~11.32%。解释表型变异大于10%5QTL, 包括2个类黄酮含量QTL, 花色素含量、总酚含量和黑色素含量QTL1个,它们分别解释11.10%10.20%11.67%10.37%11.32%的表型变异。研究结果表明胚色素表现为多基因控制的数量性状, 基因表达受环境影响较大, 胚与种皮色素的QTL吻合度不高, 推测种皮和胚色素合成可能受不同遗传体系控制, 与这些QTL紧密相关的分子标记可以用于胚主要色素的分子标记辅助选择。

关键词: 甘蓝型油菜, 种胚, 色素, QTL s, 重组自交系

Abstract:

The quality of rapeseed oil is greatly affected by embryonic pigments, but it has been little research report on the QTL of embryonic pigment components. The objective of this study was to identify QTL controlling embryonic pigment components in Brassica napus using the composite interval mapping (CIM) method.The recombinant inbred lines (RIL) population selfed for 7 successive generations by single seed propagating was derived from a cross between black-seeded male parent cultivar Zhongyou 821 and yellow-seeded female parent line GH06. The population was grown at Beibei and Wanzhou in Chongqing in 2007. Four kinds of embryonic pigment components were identified by constructed genetic map. A total of 31 QTL were detected on 14 different linkage groups. Five QTL for anthocyanidin content werelocated on linkage groups 1, 5, 10, 16, and 20, respectively, explaining 6.08%11.67% of phenotypic variation; ten QTL for flavonoid content were located on linkage groups 1, 3, 6, 7, 12, 20, and 25, respectively, explaining 4.48%11.10% of phenotypic variation; eight QTL for total phenol content were located on linkage groups 1, 2, 12, 16 and 20, respectively, accounting for 5.24%10.37% of phenotypic variation; and eight QTL for melanin content were located on linkage groups 5, 8, 10, 12, 14, and 22, respectively, explaining 5.44%11.32% of phenotypic variation. Five major QTL explainingover 10% of phenotypic variation were found, including 2, 1, 1, and 1 for flavonoid, anthocyanidin, total phenol and melanin content (qFCB-3-2, qFCW-1-1, qACW-10-1, qTPCW-12-1, and qMCB-22-5), which accounted for 11.10%, 10.20%, 11.67%, 10.37%, and 11.32% of phenotypic variation respectively. These results suggest that the embryonic pigments are controlled by many minor-effect genes, with a pattern of quantitative trait inheritance, and the expression of the QTL is affected by environmental factors. QTL for seed coat pigments showed little overlapping with those for embryonic pigments, implying that seed coat pigments and embryonic pigments might be controlled by different genetic systems. Molecular markers closely linked with these QTLscould be applied in marker-assisted selection of embryonic pigment components in Brassica napus.

Key words: Brassica napus L, Embryo pigment, Quantitative trait locus(QTL), Recombinant inbred lines(RILs)

[1]Fu T-D(傅廷栋). Chinese rapeseed production and the improve-ment of the status and prospects. Anhui Agric Sci Bull (安徽农学通报), 2000, 6(1): 2-9(in Chinese)
[2]Ecke W, Uzunova M, Wei?leder K. Mapping the genome of rapeseed (Brassica napus L.): II. Localisation of genes control-ling erucic acid synthesis and seed oil content. Theor Appl Genet, 1995, 91: 972-977
[3]Cheung W Y, Landry B S, Raney P, Rakow G F W. Molecular mapping of seed quality traits in (Brassica juncea L. Czern and Coss). Acta Hort, 1998, 459: 139-147
[4]Cheung W Y, Gugel R K, Landry B. Identification of RFLP markers linked to the white rust resistance gene (Acr) in mustard (Brassica juncea L. Czern and Coss). Genome, 1998, 41: 626-628
[5]Rajcan I, Kasha K J, Kott L S, Beversdorf W D. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica, 1999, 105: 173-181
[6]Gül M K, Becker H C, Ecke W. QTL mapping and analysis of QTL×nitrogen interactions for protein and oil in Brassica napus L. Proc. 11th Intl. Rapeseed Congress, Copenhagen, Denmark, 2003. pp 6-10
[7]Burns M J, Barnes S R, Bowman J G, Clarke M H E, Werner C P, Kearsey M J. QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid com-position. Heredity, 2003, 90: 39-46
[8]Zhao J Y, Becker H C, Zhang D Q, Zhang Y F, Ecke W. Oil con-tent in a European×Chinese rapeseed population: QTL with addi-tive and epistatic effects and their genotype-environment interac-tions. Crop Sci, 2005, 45: 51-59
[9]Ruecker B. On the inheritance of seed coat colour in winter oil-seed rape (Brassica napes L.). Cruciferae-Newsletter, 1991, 14: 50-51
[10]Van Deynze A E, Landry B S, Pauls K P. The identification of re-striction fragment length polymorphisms linked to seed colour genes in Brassica napus. Genome, 1995, 38: 534-542
[11]Somers D J, Rakow G, Prabhu V K, Friesen K R D. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome, 2001, 44: 1077-1082
[12]Liu L-Z(刘列钊). Differential display and QTL analysis on the genes related to seed color in yellow-seeded Brassica napus L. PhD Dissertation of Southwest Agricultural University, 2003(in Chinese with English abstract)
[13]Liu L-Z(刘列钊), Meng J-L(孟金陵), Lin N(林呐), Chen L(谌利), Tang Z-L(唐章林), Zhang X-K(张学昆), Li J-N(李加纳). QTL mapping of seed coat color for yellow seeded Brassica napus. Acta Genet Sin (遗传学报), 2006, 33(2): 181-187(in Chinese with English abstract)
[14]Pirie A, Mullins M G. Changes in anthocyanin and phenolics content of grapevine leaf and fiuit tissue treated with sucrose, ni-trate and abscisic acid. Plant Physiol, 1976, 58: 468-472
[15]Yan B-J(晏本菊), Li H-X(李焕秀). The relationship between browning ratio in etro PPO and phenols of pear explants. J Si-chuan Agric Univ (四川农业大学学报), 1998, 16(3): 310-313(in Chinese with English abstract)
[16]Zhou X-Z(周旭章), Wei K-H(魏开华), Chen Z-H(陈朝辉), Xie K(谢凯), Zhu J-J(朱建军). Black sesame extracted from mela-noma study. J Chem Ind For Prod (林产化工通讯), 1997, (4): 17-19(in Chinese)
[17]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer. Version 2.5
[computer program] Raleigh, NC: Department of Statistics, North Carolina State University
[2006] http://statgen. ncsu.edu/qtlcart/WQTLCart.htm.
[18]Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199
[19]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Mori-Shima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13
[20]Fu F Y, Liu L Z, Chai Y R, Chen L Yang T, Jin M Y, Ma A F, Yan X Y, Zhang Z S, Li J N. Localization of QTLs for seed color us-ing recombinant inbred lines of Brassica napus in different envi-ronments. Genome, 2007, 9: 840-854
[21]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
[22]Shirzadegan M, R?bbelen G. Influence of seed colour and hull proportions on quality properties of seeds in Brassica napus L. Fette Seifen Anstrichm, 1985, 87: 235-237
[23]Theander O, Aman P, Miksche G E, Yasuda S. Carbohydrate polyphenols and lignin in seed hulls of different colours from tumip rapeseed. J Agric Food Chem, 1977, 25: 270-273
[24]Wang H-Z(王汉中), Liu H-L(刘后利). Quantitative variation of anthocyanidins, polyphenols, trans-cinnamic acid and PAL activi- ty in seed hulls of black- and yellow-seeded B. napus. J Huazhong Agric Univ (华中农业大学学报), 1996, 15(6): 509-513(in Chi-nese with English abstract)
[25]Liang Y-L(梁艳丽), Liang Y(梁颖), Li J-N(李加纳). Difference between yellow and black seedcoat in B. napus. Chin J Oil Crop Sci (中国油料作物学报), 2002, 24(4): 14-18(in Chinese with English abstract)
[26]Liang Y-L(梁艳丽), Liang Y(梁颖), Li J-N(李加纳), Chen L(谌利). Comparison of polyphenols and polyphenol oxidase activity between yellow-and black-seeded rapeseed (B. napus). J South-west Agric Univ (西南农业大学学报), 2002, 24(2): 102-107(in Chinese with English abstract)
[27]Ye X-L(叶小利), Li J-N(李加纳), Tang Z-L(唐章林), Chen L(谌利). Study on seedcoat color and related characters of Brassica napus L. Acta Agron Sin (作物学报), 2002, 27(5): 550-556(in Chinese with English abstract)
[28]Shi S-J(史仕军), Wu J-S(吴江生). The study of seedcoat color in Yellow-seeded Brassica napus. J Huazhong Agric Univ (华中农业大学学报), 2003, 22(6): 608-611(in Chinese with English ab-stract)
[29]Zhang B-H(张宝红), Du X-M(杜雄明), Feng R(丰嵘). Cotton pigment embryo research. China Cotton (中国棉花), 1995, 22(2): 11-12(in Chinese)
[30]Zhao X-L(赵秀兰), Xu G-F(徐贵发), Lin X-Y(蔺新英), Zhao C-F(赵长峰), Yu H-X(于红霞), Li G(李钢). Determination of nutrients and total flavone in wheat germ. Shandong Food Sci Technol (山东食品科技), 1999, (1): 10-11(in Chinese with Eng-lish abstract)
[31]Tang Z L, Li J N, Zhang X K, Chen L. Genetic variation of yel-low-seeded rapeseed lines (B. napus L.) from different genetic sources. Plant Breed, 1997, 116: 471-474
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[7] 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107.
[8] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[9] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[10] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[11] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[12] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[13] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!