欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (4): 620-630.doi: 10.3724/SP.J.1006.2009.00620

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

黄淮地区大豆重要亲本间产量的杂种优势、配合力及其遗传基础

杨加银12,盖钧镒1*   

  1. 1南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京 210095;2江苏徐淮地区淮阴农科所,江苏淮安 223001
  • 收稿日期:2008-09-26 修回日期:2008-12-13 出版日期:2009-04-12 网络出版日期:2009-02-13
  • 通讯作者: 盖钧镒
  • 基金资助:

    本研究由国家重点基础研究发展规划(973规划)项目(2006CB101708,2009CB118404),国家高技术研究发展计划(863计划)项目(2006AA100104, 2009AA101106),国家自然科学基金项目(30671266),国家科技支撑计划项目(2006BAD13B05-7),高等学校创新引智计划(B08025)资助。

Heterosis,Combining Ability and Their Genetic Basis of Yield among Key Parental Materials of soybean in Huang-Huai Valleys

YANG Jia-Yin12,GAI Jun-Yi1*   

  1. 1Soybean Research Institute of Nanjing Agricultural University/National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm enhancement,Nanjing 210095,China;2Huaiyin Institute of Agricultural Sciences of xuhuai Region,Huaian 223001,China
  • Received:2008-09-26 Revised:2008-12-13 Published:2009-04-12 Published online:2009-02-13
  • Contact: GAI Jun-Yi

摘要:

2003—2005年以选自黄淮地区及美国的8个大豆重要亲本品种()及其组配的28个双列杂交组合为材料, 分析大豆亲本间的产量杂种优势及其配合力, 探讨高优势组合的遗传基础, 包括杂种优势与亲本系数、SSR标记遗传距离的相关。结果表明: (1)黄淮地区大豆亲本间存在产量超亲优势, 平均20.39%, 组合间差异甚大, 变幅5.34%~76.88%, 优选出豫豆22×晋豆27、淮豆4×晋豆27、诱变30×90-24, 超亲优势分别为76.88%29.90%34.42%, 超标率均在25.00%以上, 晋豆27诱变30为优秀亲本材料。单株荚数及单株粒数的优势和产量优势相对一致;(2) 大豆亲本间产量杂种优势既与双亲一般配合力之和及特殊配合力有关, 又不完全相关。高优势高产组合的亲本产量配合力特点为亲本之一具有较高的一般配合力, 或双亲具有较高的一般配合力之和, 兼有较高的特殊配合力。单株荚数和单株粒数的情况和产量一致;(3) 按亲本系数聚类和按SSR标记遗传相似系数聚类揭示的8个亲本间的遗传关系相对一致, 均分为两组, 一组包含6个黄淮中、南部品种(), 另一组包含1个山西和1个美国品种。要获得高优势高产组合, 亲本间必须具有一定的遗传距离, 但遗传距离大并不一定都高产高优势, 还有其他因素决定杂种优势。

关键词: 大豆, 产量, 杂种优势, 一般配合力, 特殊配合力, 亲本系数, SSR标记

Abstract:

In recent years, breeding for hybrid cultivars of soybean [Glycine max (L.) Merr.] for utiliazation of heterosis has been paid great attention, but there are few reports published on the fundamental aspects regarding the heterosis in soybeans.. In fact, for a real utilization of hybrid soybean, the important prerequisite is high heterosis. Therefore, a fundamental effort in hybrid breeding is the choice of parents and identification of superior hybrid combinations. In the paper, heterosis and combining ability were determined using eight key parental materials, including seven from Huang-Huai region and one from US as well as their 28 F1 diallel crosses in Huaian, Jiangsu, China from 2003 to 2005, and relationships between F1 performance and its pedigree-based and SSR-based genetic distances were investigated. The results showed that there were heterobeltiosis in yield among parents in Huang-Huai region with average heterobeltiosis of 20.39%, and a big difference among hybridized combinations with a range from 5.34% to 76.88%. We screened combinations, among them, Yudou 22 × Jindou 27, Huaidou 4 × Jindou 27, and Youbian 30 × Meng 9024 had the heterobeltiosis in yield of 76.88%, 29.90%, and 34.42%, respectively. Among those parents used above, Youbian 30 and Jindou 27 were the elite. Heterosis of pods per plant and seeds per plant were relatively in accord with yield heterosis. Yield heterosis in parents was related to general combining ability(GCA) and specific combining ability(SCA). One of parents has high GCA or both have high GCA and high SCA in high-yield combinations. Parents-based cluster and SSR-based cluster analysis revealed that genetic relationships for eight parents were basically consistent, and eight parents were grouped into two groups, one including six varieties from middle and south of Huang-Huai region, the other consisting of one from Shanxi and one from America. Therefore, certain genetic distanceis require for a cross with high heterosis and high yield, but genetic distance is not an only determinant factor for high-yield heterosis.

Key words: Soybean, Yield, Heterosis, General combining ability, Specific combining ability, Coefficient of parentage, SSR marker

[1] Wentz J B, Stewart R T. Hybrid vigor in soybeans. J Am Soc Agron, 1924, 16: 534–540
[2] Veatch C. Vigor in soybeans as affected by hybridity. J Am Soc Agron, 1930, 22: 289–310
[3] Section of Soybean Research, Department of Agronomy, Northeast Agricultural College (东北农学院农学系大豆课题组). Investigation on heterosis of F1 of soybean. Acta Genet Sin (遗传学报), 1977, 4(3): 228–232(in Chinese with English abstract)
[4] Palmer R G, Gai J Y, Sun H, Burton J W. Production and evaluation of hybrid soybean. Plant Breed Rev, 2001, 21: 263–307
[5] Leffel R C, Weiss M G. Analysis of diallel crosses among ten varieties of soybean. Agron J, 1958, 50: 528–534
[6] Ma Y-H(马育华), Gai J-Y(盖钧镒), Hu Y-Z(胡蕴珠). Studies on genetic variation of successive generations after hybridization in soybeans: II. Combining ablity and related genetic parameters. Acta Agron Sin (作物学报), 1983, 9(4): 249–258(in Chinese with English abstract)
[7] Gai J-Y(盖钧镒), Ma Y-H(马育华), Hu Y-Z(胡蕴珠). Heterosis and combining ability performed in F1 and F3 hybrids between soybean cultivars from the PRC and US. Soybean Sci (大豆科学), 1984, 3(3): 183–191 (in Chinese with English abstract)
[8] Zhao L-M(赵丽梅), Sun H(孙寰), Wang S-M(王曙明), Wang Y-Q(王跃强), Huang M(黄梅), Li J-P(李建平). Breeding of hybrid soybean HybSoy 1. Chin J Oil Crop Sci (中国油料作物学报), 2004, 26(3): 15–17(in Chinese with English abstract)
[9] Cox T S, Kiang Y T, Gorman M B, Rodgers D M. Relationship between coefficient of parentage and genetic similarity indices in the soybean. Crop Sci, 1985, 25: 529–532
[10] Sneller C H. Pedigree analysis of elite soybean lines. Crop Sci, 1994, 34: 1515–1522
[11] Manjarrez-Sandoval P, Carter T E Jr, Webb D M, Burton J W. Heterosis in soybean and its prediction by genetic similarity measures. Crop Sci, 1997, 37: 1443–1452
[12] Smith O S, Smith J S C, Bowen S L, Tenborg R A, Wall S J. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis and RFLPs. Theor Appl Genet, 1990, 80: 833–840
[13] Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred using molecular markers. Genetics, 1992, 132: 823–839
[14] Cerna F J, Cianzio S R, Rafalski A, Tingey S, Dyer D. Relationship between seed yield heterosis and molecular marker heterozygosity in soybean. Theor Appl Genet, 1997, 95: 460–467
[15] Bohn M, Utz H F, Melchinger A E. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci, 1999, 39: 228–237
[16] Zhang Q F, Gao Y J, Saghai Maroof M A, Yang S H, Li J X. Molecular divergence and hybrid performance in rice. Mol Breed, 1995, 1: 133–142
[17] Lackey J A. Chromosome numbers in the Phaseoleae (Fabaceae: Faboideae) and their relation to taxonomy. Am J Bot, 1980, 67: 595–602
[18] Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13–15
[19] Ma Y-H(马育华). Basis of Quantitative Trait Genetics for Plant Breeding (植物育种的数量遗传学基础). Nanjing: Jiangsu Science and Technology Press, 1982. pp 376–426 (in Chinese)
[20] Zhang Y D, Kang M S, Lamkey K R. DIALLEL-SAS05: A comprehensive program for Griffing’s and Gardner-Eberhart analyses. Agron J, 2005, 97: 1097–1106
[21] Nei M, Li W H. Mathematical model for studying genetic variation in term of restriction endonucleases. Proc Nat1 Acad Sci USA, 1979, 76: 5269–5273
[22] Rohlf F J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System (Version 2.10e). New York: Exeter Software, 1989
[23] Weiss M G, Weber C R, Kalton R R. Early generation testing in soybeans. J Am Soc Agron, 1947, 39: 791–811
[24] Weber C R, Empig L T, and Thorne J C. Heterotic performance and combining ability of two-way F1 soybean hybrids. Crop Sci, 1970, 10: 159–160
[25] Ma Y-H(马育华), Gai J-Y(盖钧镒), Hu Y-Z(胡蕴珠). A study on genetic variability of successive generations after hybridization in soybean: I. Heterosis and inbreeding depression. Sci Agric Sin (中国农业科学), 1983, 16(5): 1–6 (in Chinese with English abstract)
[26] Wang S-M(王曙明), Sun H(孙寰), Wang Y-Q(王跃强), Zhao L-M(赵丽梅), Li N(李楠), Fu L-S(付连舜), Li W-D(李卫东), Qi N (齐宁), Xing H(邢邯), Li L(李磊). Studies on heterosis and screening of highly heterotic combinations in soybean: I. F1 seed yield heterosis and screening of highly heterotic combinations. Soybean Sci (大豆科学), 2002, 21(3): 161–167(in Chinese with English abstract)
[27] Burton J W, Brownie C. Heterosis and inbreeding depression in two soybean single crosses. Crop Sci, 2006, 46: 2643–2648
[28] Ortiz-Perez E, Cianzio S R, Wiley H, Horner H T, Davis W H, Palmer R G. Insect-mediated cross-pollination in soybean
[Glycine max (L.) Merrill]: I. Agronomic performance. Field Crops Res, 2007, 101: 259–268
[29] Palmer R G, Ortiz-Perez E, Cervantes-Martinez I G, Wiley H, Hanlin S J, Healy R A, Horner H T, Davis W H. Hybrid soybean-current status and future outlook. In: Proceedings of the 33rd Soybean Seed Research Conference. American Seed Trade Association Seed Expo, 2003
[30] Gai J-Y(盖钧镒). Genetic Improvement and Germplasm Study of Soybean in China(我国大豆遗传改良和种质研究). In: Science and Technology at the Frontier in China. Beijing: Higher Education Press, 2002. pp 667–684(in Chinese)
[31] Zhang B(张博), Qiu L-J(邱丽娟), Chang R-Z(常汝镇). Primary study on predicting heterosis by SSR marker distance among soybean cultivars. Soybean Sci(大豆科学), 2003, 22(3): 166–171(in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[13] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[14] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[15] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!