欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1483-1490.doi: 10.3724/SP.J.1006.2009.01483

• 耕作栽培·生理生化 • 上一篇    下一篇

大豆不同产量水平生物量积累与分配的动态分析

黄中文1,2,赵团结1,盖钧镒1,*   

  1. 1南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京210095;2河南科技学院农学系
  • 收稿日期:2008-12-02 修回日期:2009-04-21 出版日期:2009-08-12 网络出版日期:2009-06-10
  • 通讯作者: 盖钧镒,E-mail: sri@njau.edu.cn; Tel: 025-84395405
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100104),国家重点基础研究发展计划(973计划)项目(2006CB101708和2009CB118404),国家自然科学基金项目(30671266),教育部高等学校创新引智计划项目(B08025),农业部公益性行业专项(200803060)资助。

Dynamic Analysis of Biomass Accumulation and Partition in Soybean with Different Yield Levels

HUANG Zhong-Wen1,2,ZHAO Tuan-Jie1,GAI Jun-Yi1,*   

  1. 1Soybean Research Institute,Nanjing Agricultural University/National Center for Soybean Improvement/National Key Laboratory for Crop Genetics and Germplasm Enhancement,Nanjing 210095,Jiangsu;2Department of Agronomy,Henan Institute of Science and Technology,Xinxiang 453003,China
  • Received:2008-12-02 Revised:2009-04-21 Published:2009-08-12 Published online:2009-06-10
  • Contact: GAI Jun-Yi,E-mail: sri@njau.edu.cn; Tel: 025-84395405

摘要:

利用亲本间生物量、产量有较大差异的重组自交家系群体(NJRIKY),在相对控制遗传背景的条件下研究地下和地上部生物量与产量相关的动态,比较高中低产家系生物量累积和分配的动态特征,为大豆高产栽培管理和育种提供生物量动态调控与选择的依据。结果表明: (1) 地下部和地上部生物量与产量显著相关,随生长进程,相关系数逐渐增加,至鼓粒期(R5~R6)相关系数达到最大r分别约0.760.79(2) 大田条件2 500~2 800 kg hm-2以上的高产家系,地下部和地上部生物量显著高于中、低产家系,最大累积值均出现在鼓粒期,地下部和地上部生物量最大值分别为660~700 kg hm-27 200~7 800 kg hm-2(3) 两年高产组所包含的家系不尽相同,产量下降的家系相应生物量也下降,这归因于环境所致的生物量累积不足;(4) 高产家系各器官生物量分配动态特征为茎秆、叶柄占同时期全生物量的比例显著高于中、低产家系,R5时分别为30.8%10.6%,而叶、根比例显著低于中、低产家系,R5时分别为34.1%9.7%。未来大豆产量的突破有赖于品种生物量与收获指数的综合改良和生长调控技术的继续改进。

关键词: 大豆, 产量, 生物量积累, 动态生物量分配, 动态相关

Abstract:

The dynamic correlation between yield and above- and below-ground biomass and the dynamic partition of biomass of high, medium and low yield lines were studied by using the population of recombinant inbred lines NJRIKY derived from a cross between parents with different biomass and yield potential levels to obtain some information for dynamic control of biomass accumulation in high yield breeding and management of soybean. The results obtained were as follows: (1) Yield was significantly and positively correlated with above- and below-ground biomass accumulation, their correlation increased during the growing stages and the peak correlation occurred at seed filling stage (R5–R6) with r = 0.76 for below-ground biomass and 0.79 for above-ground biomass. (2) The high yield lines (2 500–2 800 kg ha-1) had a significant higher below-ground and above-ground biomass accumulation than the medium yield and low yield lines. Both below- and above-ground biomass accumulation reached the peak at seed filling stage with the highest below-ground biomass of 660700 kg ha-1 and above-ground biomass of 720–780 kg ha-1 at R5. (3) The composition of high yield lines was not consistent in the two years. Lines with decreased yield had also a decreased biomass, which demonstrated reduction of biomass accumulation caused by different environments was the reason for yield decrease. (4) The dynamic partition of biomass to stem and petiole during growing stages in high yield lines (30.8% and 10.6% at R5, respectively) was significantly higher than that in medium and low yield lines and the dynamic partition of biomass to leaf and root during growing stages in high yield lines (34.1% and 9.7% at R5, respectively) was significantly lower than that in medium and low yield lines. The results implied that the more increase of yield in the future depends on the comprehensive genetic improvement of both biomass and harvest index and the successive advancement of growth regulation technology in soybean.

Key words: Soybean, Yield, Biomass accumulation, Dynamic biomass partition, Dynamic correlation

[1] Boerma H R, Specht J E. Soybeans: Improvement, Production, and Uses, 3rd edn. Madison, WI, USA: ASA, CSSA & SSSA, Inc. Publishers, 2004. p 562
[2] Lugg D G, Sinclair T R. Sensonal changes in photosynthesis of field-grown soybean leaflets: II. Relation to leaflet dimensions. Photosynthtica, 1981, 15: 129-137
[3] Burkey K O, Wells R. Response of soybean photosynthesis and chloroplast membrane function to canopy development and mutual shading. Plant Physiol, 1991, 97: 245-252
[4] Burias N, Planchon C. Increasing soybean productivity through selection for nitrogen fixation. Agron J, 1999, 82: 1031-1034
[5] Pazdernik D L, Graham P H, Orf J H. Variation in pattern of nitrogen accumulation and distribution in soybean. Crop Sci, 1997, 37: 1482-1486
[6] Ronis D H, Sammons D J, Kenworthy W J, Meisinger J J. Heritability of total and fixed N content of the seed in two soybean populations. Crop Sci, 1985, 25: 1-4
[7] Muchow R C, Roberston M J, Pengelly B C. Accumulation and partitioning of biomass and nitrogen by soybean, mungbean and cowpen under contrasting environmental conditions. Field Crop Res, 1993, 33: 13-36
[8] Egli D B, Guffy R D, Heitholt J J. Factors associated with reduced yields of decayed plantings of soybean. J Agron Crop Sci, 1987, 159: 176-185
[9] Board J E, Modali H. Dry matter accumulation predictors for optimal yield in soybean. Crop Sci, 2005, 45: 1790-1799
[10] Niklas K J, Enquist B J. Invariant scaling relationships for interspecific plant biomass production rates and body size. Proc Natl Acad Sci USA,2001, 98: 2922-2927
[11] Shanghai Office of SAS Institute Inc of USA (美国SAS软件研究所上海办事处). SAS Base Manual (SAS基础教程). Shanghai: Shanghai Scientific and Technical Publishers, 1997 (in Chinese)
[12] SPSS Science Marketing Department, SigmaPlot 10 User’s Guide.
[2006-11-10]
[2007-03-10]. Available at http://www.spss.com
[13] Darlington R B. Multiple regression in psychological research and practice. Psycholog Bull, 1968, 69: 161-182
[15] Dong Z(董钻). Yield Physiology of Soybean (大豆产量生理). Beijing: China Agriculture Press, 2000. pp 53-55(in Chinese)
[16] Yang X-H(杨秀红), Wu Z-P(吴宗璞), Zhang G-D(张国栋). Correlations between characteristics of roots and those of aerial parts of soybean varieties. Acta Agron Sin (作物学报), 2002, 28(1): 72-75(in Chinese with English abstract)
[17] Weaver J E. Root Development of Field Crops. New York: McGraw-HiBook Company, 1926. pp 286-291
[18] Rigsby B, Board J E. Identification of soybean cultivars that yield well at low plant population. Crop Sci, 2003, 42: 234-239
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[13] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[14] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[15] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!