欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1500-1507.doi: 10.3724/SP.J.1006.2009.01500

• 耕作栽培·生理生化 • 上一篇    下一篇

开放式臭氧浓度升高条件下不同敏感型小麦品种的光合特性

曹际玲1,2,王亮1,2,曾  青1,*,梁晶1,2,唐昊冶1,谢祖彬1,刘钢1,朱建国1,*,小林和彦3   

  1. 1中国科学院南京土壤研究所土壤与可持续农业国家重点实验室,江苏南京210008;2中国科学院研究生院,北京100080;3Department of Global Agricultural Science,Graduate School of Agricultural and  Life Science,University of Tokyo,Tokyo 113-8657,Japan
  • 收稿日期:2008-12-01 修回日期:2009-04-19 出版日期:2009-08-12 网络出版日期:2009-06-10
  • 通讯作者: 曾青, E-mail: qzeng@issas.ac.cn; 朱建国, E-mail: jgzhu@issas.ac.cn
  • 基金资助:

    本研究由中国科学院南京土壤研究所知识创新工程领域前沿项目(ISSASIP0709),国家自然科学基金项目(30770408),中国科学院国际合作重点项目(GJHZ05),日本环境厅全球环境研究基金项目资助。

Characteristics of Photosynthesis in Wheat Cultivars with Different Sensitivities to Ozone under O3-Free Air Concentration Enrichment Conditions

CAO Ji-Ling1,2,WANG Liang1,2,ZENG Qing1,*,LIANG Jing1,2,TANG Hao-Ye1,XIE Zu-Bin1,LIU Gang1,ZHU Jian-Guo1,Kazhuhiko KOBAYASHI3   

  1. 1 State Key Laboratory of Soil and Stainable Agricultural, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 2 Graduate School of Chinese Academy of Sciences, Beijing 100080, China; 3 Department of Global Agricultural Science, Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo 113-8657, Japan
  • Received:2008-12-01 Revised:2009-04-19 Published:2009-08-12 Published online:2009-06-10
  • Contact: ZENG Qing,E-mail: qzeng@issas.ac.cn;ZHU Jian-Guo,E-mail: jgzhu@issas.ac.cn

摘要:

利用亚洲首个开放式臭氧浓度升高平台(O3FACE),以臭氧敏感品种烟农19和臭氧耐性品种扬麦16为试材,研究了小麦光合特性对O3浓度升高的响应,并分析了不同敏感型小麦品种响应差异的可能原因。结果表明,O3浓度升高并持续处理75 d后,小麦旗叶的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均显著下降,其中扬麦16的降幅(27.9%37.5%27.9%)明显小于烟农19 (61.1%68.0%57.4%);而Ci基本维持恒定。说明O3FACE下小麦旗叶Pn下降是气孔因素和非气孔因素共同作用的结果,其中非气孔因素起决定性作用。叶绿素荧光分析表明,两个品种的PSII最大光化学量子产量(Fv/Fm)PSII潜在活性(Fv/Fo)、光化学猝灭(qP)和光化学反应速率(Prate)等荧光参数均呈下降趋势,而非光化学猝灭(NPQ)和热耗散速率(Drate)呈上升趋势;可溶性蛋白和核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)则与荧光参数及Pn的变化趋势一致。由此可见,RuBP的羧化限制和PSII光系统损伤可能是O3胁迫下小麦旗叶Pn下降的主要非气孔因素。此外,O3FACE下扬麦16各参数的变幅均小于烟农19,扬麦16较高的蒸腾速率和较小的Rubisco含量降幅可能是其维持光合机构功能的重要原因。

关键词: 臭氧(O3), 小麦, 光合作用, 叶绿素荧光, 可溶性蛋白, Rubisco

Abstract:

Ozone (O3) has been recognized as a secondary phytotoxic air pullutant of serious concern in agriculture because of its effects on the physiology, growth, and yield of plants. Although the effects of elevated O3 concentration on plant photosynthesis have widely studied with environment-controlled chambers, the conclusions are not certain due to the difference between free-air field and environment-controlled chambers. O3-Free Air Concentration Enrichment (O3FACE) can provide undisturbed field conditions and more reliable measurements in comparison with environment-controlled facilities. In this study, two winter wheat (Tritcium aestivum L.) cultivars (Yannong 19 and Yangmai 16) with different sensitivities to O3 were used to investigate the responses of photosynthsis characteristics to elevated O3 concentration with the Chinese O3FACE platform. Under O3 treatment for 75 d, the net photosynthetic rate (Pn), stomtal conductance (Gs), and transpiration rate (Tr) decreased significantly in both cultivars, whereas the intercellular CO2 concentration (Ci) changed slightly. This indicated that the reduction of Pnresulted from stomatal and nonstomal factors with the major role of nonstomatal. The O3-sensitive cultivar Yannong 19 showed larger reductions in Pn (61.1%), Gs (68.0%), and Tr (57.4%) than Yangmai 16 (27.9%, 37.5%, and 27.9%, respectively). In the chlorophyll fluorescence parameters, the maximal photochemical efficiency of PSII in the dark (Fv/Fm), the potential activity of PSII (Fv/Fo), the photochemical quenching (qP), and the rate of photochemical reaction (Prate) decreased in O3 treatment, but the nonphotochemical quenching (NPQ) and the rate of thermal dissipation (Drate) showed the upward tendency. The change tendency of total soluble protein content and the amount of Rubisco was similar to that of chlorophyll fluorescence parameters and Pn. The results implied that the major nonstomal factors responsible for Pn decrease under elevated O3 concentration were the carboxylation limitation of RuBP and the damage of PSII. The change extents of all parameters were larger in Yannong 19 than in Yangmai 16. The high Tr value and slow reduction of Rubisco amount in Yangmai 16 are probably crucial reasons for its high photosynthetic rate.

Key words: Ozone, Wheat, Photosynthesis, Chlorophyll fluorescence, Soluble protein, Rubisco

[1] Prentice I, Farquhar G, Fasham M. The Carbon Cycle and Atmospheric Carbon Dioxide in Climate Change 2001. Cambridge, UK: Cambridge University Press, 2001. pp 183-238
[2] International Panel on Climate Changes 2001. Cambridge, UK & New York, USA: Cambridge University Press, 2002
[3] Morgan P B, Bernacchi C J, Ort D R, Long S P. An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiol, 2004, 135: 2348-2357
[4] Fuhrer J, Booker F. Ecological issues related to ozone: agricultural issues. Environ Intl, 2003, 29: 141-154
[5] Didier L T, Sirkku M. Ozone and water deftcit reduced growth of aleppo pine seedlings. Plant Physiol Biochem, 2003, 41: 55-63
[6] Jin M-H(金明红), Feng Z-W(冯宗炜), Zhang F-Z(张福珠). Effects of ozone on membrane lipid peroxidation and antioxidant system of rice leaves. Environ Sci (环境科学), 2000, 21(3): 1-5 (in Chinese with English abstract)
[7] Guo J-P(郭建平), Wang C-Y(王春乙), Bai Y-M(白月明), Wen M(温民), Huo Z-G(霍治国), Liu J-G(刘江歌), Li L(李雷). The influence of atmospheric O3 variation on physiological process and grain qualities in winter wheat. J Appl Meteorol (应用气象学报), 2001, 12(2): 255-256 (in Chinese with English abstract)
[8] Heath R L. Possible mechanisms for inbition of photosynthesis by ozone. Photosynth Res, 1994, 39: 439-451
[9] Calatayud A, Iglesias D J, Talon M, Barreno E. Response of spinach leaves (Spinacia oleracea L.) to ozone measures by gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation. Photosynthetica, 2004, 42: 23-29
[10] Guo J-P(郭建平), Wang C-Y(王春乙), Wen M(温民), Bai Y-M(白月明), Huo Z-G(霍治国). The experimental study on the impact of atmospheric O3 variation on rice. Acta Agron Sin (作物学报), 2001, 27(6): 822-826 (in Chinese with English abstract)
[11] Farage P K, Long S P. The effect of O3 fumigation during leaf development on photnsynthesis of wheat and pea: An in vivo analysis. Photosynth Res, 1999, 59: 1-7
[12] Calatayud A, Ramirez J W, Iglesias D J, Barreno E. Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiol Plant, 2002, 116: 308-316
[13] Yao F-F(姚芳芳), Wang X-K(王效科), Chen Z(陈展), Feng Z-Z(冯兆忠), Zheng Q-W(郑启伟). Response of photosynthsis, growth and yield of field growth winter wheat to ozone exposure. J Plant Ecol (植物生态学报), 2008, 32(1): 212-219 (in Chinese with English abstract)
[14] Guderian R. Emissions and ambient ozone concentration. In: Guderian R ed. Air Pollution by Photochemical Oxidants: Formation, Transport, Control and Effects on Plants. Berlin: Springer, 1985. pp 11-67
[15] Fuhrer J, Grandjean G A, Tschannen W, Shariat M H. The response of spring wheat (Triticum aestivum) to ozone high elevations. New Phytol, 1992, 121: 211-219
[16] Degl’innocenti E, Guidi L, Soldatini G F. Effects of elevated ozone on chlorophyll a fluorescence in symptomatic and asymptomatic leaves of two tomato genotypes. Biol Plant, 2007, 51: 313-321
[17]Makino A, Mae T, Ohira K. Colorimetric measurement of protein stained polyacrylamide gel electrophoresis by eluting with formamide. Agriculturebiol Chem, 1986, 50: 1911-1912
[18] Flowers M D, Fiscus E L, Burkey K O, Booker F L, Dubois J J B. Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exp Bot, 2007, 61: 190-198
[19] Wang L(王亮), Zeng Q(曾青), Feng Z-Z(冯兆忠), Zhu J-G(朱建国), Chen X(陈曦), Xie Z-B(谢祖彬), Liu G(刘钢), Kobayashi K. Photosynthetic damage induced by elevated O3 in two varieties of winter wheat with free air controlled enrichment approach. Environ Sci (环境科学), 2009, 30(3): 223-230 (in Chinese with English abstract)
[20] Bai Y-M(白月明), Guo J-P(郭建平), Wang C-Y(王春乙), Wen M(温民). The reaction and sensitivity experiment of O3 on rice and winter wheat. Chin J Eco-Agric (中国生态农业学报), 2002, 10(1): 13-16 (in Chinese with English abstract)
[21] Robinson M F, Heath J, Mansfield T A. Disturbances in stomatal behaviour caused by air pollution. J Exp Bot, 1998, 49: 461-469
[22] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 1982, 33: 317-345
[23] Noormets A, Sorer A, Pell E J, Dickson R E, Podil A G, Sober K J, Isebrands J G, Karnosky D F. Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3. Plant, Cell Environ, 2001, 24: 327-336
[24] Lin S-Q(林世青), Xu C-H(许春晖), Zhang Q-D(张其德), Xu L(徐黎), Mao D-Z(毛大璋), Kuang T-Y(匡廷云). Some application of chlorophyll fluorescence kinetics to plant stress physiology, phytoecology and agricultural modernization. Chin Bull Bot (植物学通报), 1992, 9(1): 1-16 (in Chinese)
[25] Demmig A B, Adams W W III. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 599-626
[26] Meyer U, Köllner B, Willenbrink J, Krause G H M. Effects of different ozone exposure regimes on photosynthesis, assimilates and thousand grain weight in spring wheat. Agric, Ecosyst Environ, 2000, 78: 49-55
[27] Guidi L, Degl’innocenti E, Soldatini G F. Assimilation of CO2, enzyme activation and photosynthetic electron transport in bean leaves, as affected by high light and ozone. New Phytol, 2002, 156: 377-388
[28] Degl’innocenti E, Guidi L, Soldatini G F. Characterization of the photosynthetic response of tobacco leaves to ozone: CO2 assimilation and chlorophyll fluorescence. J Plant Physiol, 2002, 159: 845-853
[29] Qi X-L(齐学礼), Hu L(胡琳), Dong H-B(董海滨), Zhang L(张磊), Wang G-S(王根松), Gao C(高崇), Xu W-G(许为钢). Characteristics of photosynthesis in different wheat cultivars under high light intensity and high temperature stresses. Acta Agron Sin (作物学报), 2008, 34(12): 2196-2201 (in Chinese with English abstract)
[30] Wu C-A(吴长艾), Meng Q-W(孟庆伟), Zou Q(邹琦), Zhao S-J(赵世杰), Wang W(王玮). Comparative study on the photooxidative response in different wheat cultivar leaves. Acta Agron Sin (作物学报), 2003, 29(3): 339-344 (in Chinese with English abstract)
[31] Jiang C-D(姜闯道), Gao H-Y(高辉远), Zou Q(邹琦). Mechanism of protection of pH gradient in thylakoid membrane for photoinhibition. Plant Physiol Commun (植物生理学通讯), 2000, 36(2): 97-102 (in Chinese with English abstract)

[32] Marco F E, Calvo P, Carrasco M, Sanz J. Analysis of molecular markers in three different tomato cultivars exposed to ozone stress. Plant Cell Rep, 2008, 27: 197-207
[33] Baier M, Kandlbinder A, Golldack D, Dietz K J. Oxidative stress and ozone: Perception, signaling and response. Plant Cell Environ, 2005, 28: 1012-1020
[34] Kangasjarvi J, Jaspers P, Kollist H. Signaling and cell death in Ozone-exposed Plants. Plant Cell Environ, 2005, 28, 1021-1036
[35] Vahisalu T, Kollist H, Wang Y F, Nishimura N, Chan W Y, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder J I, Kangasjärvi J. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature, 2008,452: 487-491

[36] Makino A, Mae T, Ohira K. Photosynthesis and ribulose-1,5-bisphosphate carboxylase in rice leaves. Plant Physiol, 1983, 73: 1002-1007

[37] Chen G Y, Yong Z H, Liao Y, Zhang D Y, Chen J, Zhu J G, Xu D Q. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation. Plant Cell Physiol, 2005,46: 1036-1045
[38] Pell E J, Eckardt N A, Glick R E. Biochemical and molecular basis for impairment of photosynthetic potential. Photosyn Res, 1994, 39: 453-462
[39] Robert L H. Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change? Environ Pollut, 2008, 155: 453-463
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!