作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1500-1507.doi: 10.3724/SP.J.1006.2009.01500
曹际玲1,2,王亮1,2,曾 青1,*,梁晶1,2,唐昊冶1,谢祖彬1,刘钢1,朱建国1,*,小林和彦3
CAO Ji-Ling1,2,WANG Liang1,2,ZENG Qing1,*,LIANG Jing1,2,TANG Hao-Ye1,XIE Zu-Bin1,LIU Gang1,ZHU Jian-Guo1,Kazhuhiko KOBAYASHI3
摘要:
利用亚洲首个开放式臭氧浓度升高平台(O3FACE),以臭氧敏感品种烟农19和臭氧耐性品种扬麦16为试材,研究了小麦光合特性对O3浓度升高的响应,并分析了不同敏感型小麦品种响应差异的可能原因。结果表明,O3浓度升高并持续处理75 d后,小麦旗叶的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均显著下降,其中扬麦16的降幅(27.9%、37.5%和27.9%)明显小于烟农19 (61.1%、68.0%和57.4%);而Ci基本维持恒定。说明O3FACE下小麦旗叶Pn下降是气孔因素和非气孔因素共同作用的结果,其中非气孔因素起决定性作用。叶绿素荧光分析表明,两个品种的PSII最大光化学量子产量(Fv/Fm)、PSII潜在活性(Fv/Fo)、光化学猝灭(qP)和光化学反应速率(Prate)等荧光参数均呈下降趋势,而非光化学猝灭(NPQ)和热耗散速率(Drate)呈上升趋势;可溶性蛋白和核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)则与荧光参数及Pn的变化趋势一致。由此可见,RuBP的羧化限制和PSII光系统损伤可能是O3胁迫下小麦旗叶Pn下降的主要非气孔因素。此外,O3FACE下扬麦16各参数的变幅均小于烟农19,扬麦16较高的蒸腾速率和较小的Rubisco含量降幅可能是其维持光合机构功能的重要原因。
[1] Prentice I, Farquhar G, Fasham M. The Carbon Cycle and Atmospheric Carbon Dioxide in Climate Change 2001. Cambridge, UK: Cambridge University Press, 2001. pp 183-238 [2] International Panel on Climate Changes 2001. Cambridge, UK & New York, USA: Cambridge University Press, 2002 [3] Morgan P B, Bernacchi C J, Ort D R, Long S P. An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiol, 2004, 135: 2348-2357 [4] Fuhrer J, Booker F. Ecological issues related to ozone: agricultural issues. Environ Intl, 2003, 29: 141-154 [5] Didier L T, Sirkku M. Ozone and water deftcit reduced growth of aleppo pine seedlings. Plant Physiol Biochem, 2003, 41: 55-63 [6] Jin M-H(金明红), Feng Z-W(冯宗炜), Zhang F-Z(张福珠). Effects of ozone on membrane lipid peroxidation and antioxidant system of rice leaves. Environ Sci (环境科学), 2000, 21(3): 1-5 (in Chinese with English abstract) [7] Guo J-P(郭建平), Wang C-Y(王春乙), Bai Y-M(白月明), Wen M(温民), Huo Z-G(霍治国), Liu J-G(刘江歌), Li L(李雷). The influence of atmospheric O3 variation on physiological process and grain qualities in winter wheat. J Appl Meteorol (应用气象学报), 2001, 12(2): 255-256 (in Chinese with English abstract) [8] Heath R L. Possible mechanisms for inbition of photosynthesis by ozone. Photosynth Res, 1994, 39: 439-451 [9] Calatayud A, Iglesias D J, Talon M, Barreno E. Response of spinach leaves (Spinacia oleracea L.) to ozone measures by gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation. Photosynthetica, 2004, 42: 23-29 [10] Guo J-P(郭建平), Wang C-Y(王春乙), Wen M(温民), Bai Y-M(白月明), Huo Z-G(霍治国). The experimental study on the impact of atmospheric O3 variation on rice. Acta Agron Sin (作物学报), 2001, 27(6): 822-826 (in Chinese with English abstract) [11] Farage P K, Long S P. The effect of O3 fumigation during leaf development on photnsynthesis of wheat and pea: An in vivo analysis. Photosynth Res, 1999, 59: 1-7 [12] Calatayud A, Ramirez J W, Iglesias D J, Barreno E. Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiol Plant, 2002, 116: 308-316 [13] Yao F-F(姚芳芳), Wang X-K(王效科), Chen Z(陈展), Feng Z-Z(冯兆忠), Zheng Q-W(郑启伟). Response of photosynthsis, growth and yield of field growth winter wheat to ozone exposure. J Plant Ecol (植物生态学报), 2008, 32(1): 212-219 (in Chinese with English abstract) [14] Guderian R. Emissions and ambient ozone concentration. In: Guderian R ed. Air Pollution by Photochemical Oxidants: Formation, Transport, Control and Effects on Plants. Berlin: Springer, 1985. pp 11-67 [15] Fuhrer J, Grandjean G A, Tschannen W, Shariat M H. The response of spring wheat (Triticum aestivum) to ozone high elevations. New Phytol, 1992, 121: 211-219 [16] Degl’innocenti E, Guidi L, Soldatini G F. Effects of elevated ozone on chlorophyll a fluorescence in symptomatic and asymptomatic leaves of two tomato genotypes. Biol Plant, 2007, 51: 313-321 [17]Makino A, Mae T, Ohira K. Colorimetric measurement of protein stained polyacrylamide gel electrophoresis by eluting with formamide. Agriculturebiol Chem, 1986, 50: 1911-1912 [18] Flowers M D, Fiscus E L, Burkey K O, Booker F L, Dubois J J B. Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exp Bot, 2007, 61: 190-198 [19] Wang L(王亮), Zeng Q(曾青), Feng Z-Z(冯兆忠), Zhu J-G(朱建国), Chen X(陈曦), Xie Z-B(谢祖彬), Liu G(刘钢), Kobayashi K. Photosynthetic damage induced by elevated O3 in two varieties of winter wheat with free air controlled enrichment approach. Environ Sci (环境科学), 2009, 30(3): 223-230 (in Chinese with English abstract) [20] Bai Y-M(白月明), Guo J-P(郭建平), Wang C-Y(王春乙), Wen M(温民). The reaction and sensitivity experiment of O3 on rice and winter wheat. Chin J Eco-Agric (中国生态农业学报), 2002, 10(1): 13-16 (in Chinese with English abstract) [21] Robinson M F, Heath J, Mansfield T A. Disturbances in stomatal behaviour caused by air pollution. J Exp Bot, 1998, 49: 461-469 [22] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 1982, 33: 317-345 [23] Noormets A, Sorer A, Pell E J, Dickson R E, Podil A G, Sober K J, Isebrands J G, Karnosky D F. Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3. Plant, Cell Environ, 2001, 24: 327-336 [24] Lin S-Q(林世青), Xu C-H(许春晖), Zhang Q-D(张其德), Xu L(徐黎), Mao D-Z(毛大璋), Kuang T-Y(匡廷云). Some application of chlorophyll fluorescence kinetics to plant stress physiology, phytoecology and agricultural modernization. Chin Bull Bot (植物学通报), 1992, 9(1): 1-16 (in Chinese) [25] Demmig A B, Adams W W III. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 599-626 [26] Meyer U, Köllner B, Willenbrink J, Krause G H M. Effects of different ozone exposure regimes on photosynthesis, assimilates and thousand grain weight in spring wheat. Agric, Ecosyst Environ, 2000, 78: 49-55 [27] Guidi L, Degl’innocenti E, Soldatini G F. Assimilation of CO2, enzyme activation and photosynthetic electron transport in bean leaves, as affected by high light and ozone. New Phytol, 2002, 156: 377-388 [28] Degl’innocenti E, Guidi L, Soldatini G F. Characterization of the photosynthetic response of tobacco leaves to ozone: CO2 assimilation and chlorophyll fluorescence. J Plant Physiol, 2002, 159: 845-853 [29] Qi X-L(齐学礼), Hu L(胡琳), Dong H-B(董海滨), Zhang L(张磊), Wang G-S(王根松), Gao C(高崇), Xu W-G(许为钢). Characteristics of photosynthesis in different wheat cultivars under high light intensity and high temperature stresses. Acta Agron Sin (作物学报), 2008, 34(12): 2196-2201 (in Chinese with English abstract) [30] Wu C-A(吴长艾), Meng Q-W(孟庆伟), Zou Q(邹琦), Zhao S-J(赵世杰), Wang W(王玮). Comparative study on the photooxidative response in different wheat cultivar leaves. Acta Agron Sin (作物学报), 2003, 29(3): 339-344 (in Chinese with English abstract) [31] Jiang C-D(姜闯道), Gao H-Y(高辉远), Zou Q(邹琦). Mechanism of protection of pH gradient in thylakoid membrane for photoinhibition. Plant Physiol Commun (植物生理学通讯), 2000, 36(2): 97-102 (in Chinese with English abstract) [32] Marco F E, Calvo P, Carrasco M, Sanz J. Analysis of molecular markers in three different tomato cultivars exposed to ozone stress. Plant Cell Rep, 2008, 27: 197-207 [33] Baier M, Kandlbinder A, Golldack D, Dietz K J. Oxidative stress and ozone: Perception, signaling and response. Plant Cell Environ, 2005, 28: 1012-1020 [34] Kangasjarvi J, Jaspers P, Kollist H. Signaling and cell death in Ozone-exposed Plants. Plant Cell Environ, 2005, 28, 1021-1036 [35] Vahisalu T, Kollist H, Wang Y F, Nishimura N, Chan W Y, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder J I, Kangasjärvi J. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature, 2008,452: 487-491 [36] Makino A, Mae T, Ohira K. Photosynthesis and ribulose-1,5-bisphosphate carboxylase in rice leaves. Plant Physiol, 1983, 73: 1002-1007 [37] Chen G Y, Yong Z H, Liao Y, Zhang D Y, Chen J, Zhu J G, Xu D Q. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation. Plant Cell Physiol, 2005,46: 1036-1045 [38] Pell E J, Eckardt N A, Glick R E. Biochemical and molecular basis for impairment of photosynthetic potential. Photosyn Res, 1994, 39: 453-462 [39] Robert L H. Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change? Environ Pollut, 2008, 155: 453-463 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[8] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|