欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1546-1551.doi: 10.3724/SP.J.1006.2009.01546

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米根系吸水细胞水平的杂种优势

刘小芳1,2,3,张岁岐1,2,*,杨晓青1,2,3,山仑1,2   

  1. 1中国农科院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌712100;2西北农林科技大学,陕西杨凌712100;3中国科学院研究生院,北京100049
  • 收稿日期:2008-12-30 修回日期:2009-03-18 出版日期:2009-08-12 网络出版日期:2009-06-11
  • 通讯作者: 张岁岐, E-mail: sqzhang@ms.iswc.ac.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)(2007AA100202),中国科学院知识创新工程重要方向项目(KSCX2-YW-N-003),国家自然科学基金项目(30571127),教育部新世纪优秀人才支持计划项目资助。

Heterosis of Water Uptake Ability by Roots of Maize at Cell Level

LIU Xiao-Fang1,2,3, ZHANG Sui-Qi1,2,*, YANG Xiao-Qing1,2,3, and SHAN Lun1,2   

  1. 1 State Key Laboratory of Soil Erosion and Dryland Farming of the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; 2 Northwest A&F University, Yangling 712100, China; 3 Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2008-12-30 Revised:2009-03-18 Published:2009-08-12 Published online:2009-06-11
  • Contact: ZHANG Sui-Qi, E-mail: sqzhang@ms.iswc.ac.cn

摘要:

在人工气候室水培条件下,以玉米(Zea mays L.)杂交种F1代户单4号及其母本天四和父本478为材料,用细胞压力探针技术研究了正常供水和PEG-6000模拟–0.2 MPa水分胁迫条件下玉米根皮层细胞水分关系参数的基因型差异。结果表明,根皮层细胞的直径、长度和体积均为F1>母本>父本;正常供水条件下3个玉米品种的根皮层细胞膨压均在0.6 MPa左右且品种间差异不显著,水分胁迫抑制了细胞的延伸生长且F1代和母本的细胞膨压显著高于父本;根皮层细胞壁体积弹性模量均为父本>母本> F1代,水分胁迫条件下的品种间差异显著;与正常供水条件相比,水分胁迫条件下细胞膨压显著降低,而弹性模量则大幅度提高;在两种水分条件下,水分跨细胞膜运转的半时间均为父本>母本>F1代,且半时间在水分胁迫条件下均显著高于正常供水条件下;HgCl2处理引起了半时间的延长,2-巯基乙醇则部分逆转了HgCl2的效应;在两种水分条件下,根皮层细胞水导均为F1>母本>父本且品种间差异显著,水分胁迫则显著降低了细胞水导。试验证明杂交种F1细胞水平根系吸水能力优于亲本,体现了杂种优势。

关键词: 压力探针, 细胞, 水导, 水分胁迫, 根系吸水, 杂种优势

Abstract:

Cell pressure probe technique has been extensively used to study plant water relations at cell level. Effect of numerous internal or external factors on water uptake by plant root cells has been studied. However, the feasibility of this technique for investigating the difference of water related parameters among varieties of the same plant species has not been reported. In this paper, the cell pressure probe was employed to study cortex cell water related parameters of primary roots among three different maize genotypes (F1 hybrid of HD4, its female parent T4 and male parent 478) under normal and water stress conditions. The water stress was simulated with PEG-6000 with ψs value of –0.2 MPa. As to the size of root cortex cells, the diameter, length and volume of cells represented as F1 > female parent > male parent under both conditions, and there was significant differences of volume among the three maize genotypes. Water stress reduced cell diameter and length obviously so as to decreased volume significantly. The root cortex cell turgor of the three maize genotypes was approximately 0.6 MPa and the genotypic difference was not noticeable under normal culture condition. By contrast to normal condition, cell turgor values of the three maize genotypes were decreased by 0.2–0.3 MPa under water stress condition and cell turgor of male parent was significantly lower than that of the other 2 varieties. The volumetric elastic modulus of the cell wall is a property of rigid cell wall which represents the change in turgorof a cell caused by a given change of the relative volume. Value ofelastic modulus represented as male parent > female parent > F1 under the two water levels and enhanced by water stress significantly. Moreover, the differences of elastic modulusamong the three maize genotypes were significant under water stress condition. The half time of water exchange represented as male parent > female parent > F1 under the two water levels, and water stressprolongedhalf time; 50 μmol·L-1 HgCl2 also prolongedhalf time, but 5 mmol L-1 2-mercaptoethanol reversed the effect partly and the final half timewas even larger than the original value. The cell hydraulic conductivity represented as F1 > female parent > male parent under the two water levels, and water stress noticeably decreased cell hydraulic conductivity. The results indicated that F1 was better than the parents and showed heterosis in water uptake ability at cell level, and cell pressure probe worked well in the study of genotypic difference of cell water related parameters. The above results also provide scientific references for breeding and selecting new genotypes of maize with improved ability of water uptake by roots and with drought-resistance.

Key words: Pressure probe, Cell, Hydraulic conductivity, Water stress, Water uptake by roots, Heterosis


[1] Steudle E. The regulation of plant water at the cell, tissue and organ level: role of active processes and of compartmentation. In: Schulze ED. Flux control in biological systems: From enzymes to populations and ecosystems. San Diego: Academic Press, 1994. pp 237-299

[2] Azaizeh H, Steudle E. Effects of salinity on water transport of excised maize (Zea mays L.) roots. Plant Physiol, 1991, 97: 1136-1145

[3] Azaizeh H, Gunse B, Steudle E. Effects of NaCl and CaCl2 on water transport across cells of maize (Zea mays L.) seedlings. Plant Physiol, 1992, 99: 886-894

[4] Zhang W H, Tyerman S D. Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol, 1999, 120: 849-858

[5] Wan X C, Steudle E, Hartung W. Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. J Exp Bot, 2004, 55: 411-422

[6] Lee S H, Chung G C, Steudle E. Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and chilling-tolerant figleaf gourd. J Exp Bot, 2004, 56: 985-995

[7] Lee S H, Chung G C, Steudle E. Low temperature and mechanical stresses differently gateaquaporins of root cortical cells of chilling-sensitivecucumber and -resistant figleaf gourd. Plant Cell Environ, 2005, 28: 1191-1202

[8] Ye Q, Steudle E. Oxidative gating of water channels (aquaporins) in corn roots. Plant Cell Environ, 2006, 29: 459-470

[9] Lee S H, Singh A P, Chung1 GC, Ahn SJ, Noh EK, Steudle E. An exposure of roots of cucumber (Cucumis sativus) to low temperature severely reduces root pressure, hydraulic conductivity and active transport of nutrients. Physio Plant, 2004, 120: 413-420

[10] Mu Z-X(慕自新), ZHANG S-Q(张岁岐), LIANG A-H(梁爱华), LIANG Z-S(梁宗锁). Relationship between maize root hydraulic conductivity and drought resistance.Acta Agron Sin (作物学报), 2005, 31(2): 203-208(in Chinese with English abstract)

[11] Steudle E. Pressure probe techniques: basic principles and application to studies of water and solute relations at cell, tissue and organ level. In: Smith J A C, Griffiths H. Water Deficits: Plant Responses from Cell to Community. Oxford, UK: Bios Sclentific Publishers Ltd, 1993. pp 5-36

[12] Jones H G. Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J Exp Bot, 2007, 58: 119-130

[13] Taiz L. Plant cell expansion: regulation of cell wallmechanical properties. Annu Rev Plant Physiol, 1984, 35: 585-657

[14] Neumann P M. The role of cell wall adjustment in plant resistance to water deficits. Crop Sci, 1995, 35: 1258-1266



[15] Moorea J P,

[16] Neumann P M, Fan L. The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH. Plant Physiol, 2004, 135: 2291-2300

[17] Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann P M. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol, 2006, 140: 603-612

[18] Wan X C, Zwiazek J J. Mercuric chloride effects on root water transport in aspen seedlings. Plant Physiol, 2000, 121: 939-946

[19] Hukin D, Doering-Saad C, Thomas C R, Pritchard J. Sensitivity of cell hydraulic conductivity to mercury is coincident with symplasmic isolation and expression of plasmalemma aquaporin genes in growing maize roots. Planta, 2002, 215: 1047-1056

[20] Zhu M-J(朱美君), Chen J(陈珈), Wang X-C(王学臣). Identification, distributing and function of aquaporins on cytoplasm membranes of maize root cells.Chin Sci Bull (科学通报), 2000, 45(4): 407-411(in Chinese)

[21] Wu A-H(吴安慧), Zhang S-Q(张岁岐), Deng X-P(邓西平), Shan L(山仑). Expression of TIP1-1 in maize root systems under water deficit.Acta Agron Sin (作物学报), 2006, 32(9): 1413-1417(in Chinese with English abstract)
Wu A-H(吴安慧), Zhang S-Q(张岁岐), Deng X-P(邓西平), Shan L(山仑), Liu X-F(刘小芳). Expression of ZmPIP1 subgroup genes in maize roots under water shortage. J Plant Physiol Mol Biol (植物生理与分子生物学学报),2006, 32(5): 557-562(in Chinese with English abstract) Vicré-Gibouin M, Farrant J M, Driouich A.Adaptations of higher plant cell walls to water loss: Drought vs desiccation.Physiol Plant, 2008, 134: 237-245

[1] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[2] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 陶军, 兰秀锦. 小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定[J]. 作物学报, 2022, 48(2): 511-517.
[5] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[6] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[7] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[8] 胡蕊洁, 杨向芸, 贾磊, 李玉如, 项月, 岳洁瑜, 王华忠. 病毒介导的GFP-ATG8在小麦上的表达和在自噬活性监测上的应用[J]. 作物学报, 2021, 47(12): 2371-2378.
[9] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[10] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[11] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[12] 蒋会兵,杨盛美,刘玉飞,田易萍,孙云南,陈林波,唐一春. 厚轴茶雄性不育株花药败育的生物学特性和细胞学研究[J]. 作物学报, 2020, 46(7): 1076-1086.
[13] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[14] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[15] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!