欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (05): 736-743.doi: 10.3724/SP.J.1006.2010.00736

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花霜前皮棉产量主位点组遗传分析

艾尼江1,2,朱新霞1,3,管荣展1,万英2,张天真1,*   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室/棉花研究所,江苏南京210095;2新疆石河子棉花所,新疆石河子832000;3新疆石河子大学生命科学,新疆石河子832000
  • 收稿日期:2009-11-02 修回日期:2010-02-06 出版日期:2010-05-12 网络出版日期:2010-03-15
  • 通讯作者: 张天真, E-mail: cotton@njau.edu.cn; Fax: 025-84395307
  • 基金资助:

    本研究由国家重点基础研究计划(973)项目(2006CB101708),江苏省创新学者攀登项目(BK2008036)和高等学校创新引智计划(B08025)资助。

Genetic Analysis of Major Loci Groups of Pre-frost Lint Yield in Upland Cotton

Ainijiang1,2,ZHU Xin-Xia1,3,GUAN Rong-Zhan1,WAN Ying2,ZHANG Tian-Zhen1,*   

  1. 1 Cotton Research Institute of Nanjing Agricultural University / National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, China; 2 Xinjiang Shihezi Cotton Research Institute, Shihezi 832000, China; 3 College of Life Sciences, Xinjiang Shihezi University, Shihezi 832000, China
  • Received:2009-11-02 Revised:2010-02-06 Published:2010-05-12 Published online:2010-03-15
  • Contact: ZHANG Tian-Zhen,E-mail:cotton@njau.edu.cn; Fax: 025-84395307

摘要:

选用不同来源的6个棉花品种作亲本, 按照Griffing P(P–1)/2不完全双列杂交方法配制15个杂交组合。应用QTL检测体系的主位点组基因型和基因效应, 估计主位点组霜前皮棉产量杂种优势并分析有利位点组与杂种优势的关系。结果表明, 霜前皮棉产量主位点组解释的变异占表型变异的36.79%, 主位点组与环境互作解释的变异占表型变异的33.46%, 环境解释的变异占表型变异的10.37%, 微位点组解释的变异很低, 占表型变异的3.27%。6个棉花品种的霜前皮棉产量的遗传受5个主位点组基因控制, 其加性效应(aJ)分别为5.99**、-1.26**、-0.92**、-0.75和3.01, 显性效应(dJ)分别为2.55**、4.16**、7.95**、5.32**和-7.71**各主位点组基因的效应方向、大小不等。主位点组中亲优势变幅15.55%~133.56%, 平均63.34%, 高亲优势变幅15.39%~93.82%, 平均44.56%。棉花霜前皮棉产量杂种优势主要取决于主位点组基因的杂合性。在棉花育种实践中, 通过分析亲本及组合的主位点组基因型, 能够得到有价值信息。配制早熟、高产杂交组合的同时, 结合分子聚合设计育种, 把优质、抗病虫、抗逆等性状集于一体, 可培育出综合性状优良的常规品种, 从而提高育种效率。,

关键词: 棉花, 霜前皮棉, 主位点组, 遗传效应, 主位点组x环境互作

Abstract:

Early-maturity is closely related to yield and quality of cotton. Cotton growing season in the north of China, especially in the early-maturing cotton area, is short. So early-maturity has decisive significance for the improvement of yield and quality of cotton in this specific area. In the special ecological environment of northern Xinjiang cotton growing region and the Yellow River growing region with wheat-cotton interplanting, improving the pre-frost lint yield primarily depends on the early-maturing cotton varieties with, shorter growth period and more pre-frost boll numbers. In the early-maturing Upland cotton area, pre-frost lint yield largely determines the proportion of high-quality cotton. However, research on molecular breeding for cotton earliness is still lacking at home and abroad. The early-, mid- and late-maturing materials with large genetic differences were used as parents in this study. The genotypes and the relative genetic effects of major loci groups based on Quantitative Trait Loci (QTL) detection system were first adopted to estimate the magnitude of heterosis for pre-frost lint yield, and to analyze the relationship between favourable loci groups and heterosis. According to Griffing’s P(P–1)/2 Incomplete Diallel Cross design, fifteen combinations were made by six cotton varieties from different origins. The results showed that the phenotypic variations explained by major loci groups (G), G×E, environment (E) and minor loci group were 36.79%, 33.46%, 10.37%, and 3.27%, respectively. The pre-frost lint yield was controlled by five isolated major gene loci groups with additive effects of 5.99**, –1.26**, –0.92**, –0.75, and 3.01; and dominant effects of 2.55**, 4.16**, 7.95**, 5.32**, and –7.71**, respectively. Mid-parent heterosis of lint yield for major loci groups ranged from 15.55 to 133.56%, with an average of 63.34%, whereas high-parent heterosis ranged from 15.39% to 93.82%, with an average of 44.56%. Pre-frost lint yield heterosis was mainly determined by the gene heterozygosity of major loci groups. The hybrid combination, P2×P5, had highest favorable loci aggregation and surpassed all hybrid combinations in this study in pre-frost lint yield. This shows that genes related to pre-frost lint yield exist in the early- and mid-maturing parents. On the basis of parent materials genotypic estimation, with this method, genotypes aggregating favorable loci can be identified, or the donor with unfavorable locus can be changed to achieve the strong heterotic combinations. Combined with molecular design breeding, conventional cultivars with excellent comprehensive characteristics including high-quality; resistance to insect pests, disease, stress; and other properties can be developed with enhanced breeding efficiency.

Key words: Cotton, Pre-frost lint yield, Major loci groups, Genetic effects, MLGsxenvironment interaction


[1] Cotton Research Institute, Chinese Academy of Agricultural Sciences (中国农业科学院棉花研究所). China Cotton Genetic Breeding (中国棉花遗传育种学). Jinan: Shandong Science and Technology Press, 2003 (in Chinese)


[2] Sun J-L(孙君灵), Du X-M(杜雄明), Zhou Z-L(周忠丽), Pan Z-E(潘兆娥), Pang B-Y(庞保印). Analysis on heritability and heterosis main traits of Bt transgenic cotton sGK9708 with different types. Cotton Sci (棉花学报), 2003, 15(6): 323–327 (in Chinese with English abstract)


[3] Han X-M(韩祥铭), Liu Y-X(刘英欣). Genetic analysis for yield and its components in upland cotton. Acta Agron Sin (作物学报), 2002, 28(4): 533–536 (in Chinese with English abstract)


[4] Zhou Y-Y(周有耀). A study on inheritance of main economic traits and correlations in upland cotton. J Beijing Agric Univ (北京农业大学学报), 1986, 12(3): 314, 352 (in Chinese with English abstract)


[5] Stuber C W, Lincoln S E, Wolff D W, Helentjaris T Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823–839


[6] Wang B-H(汪保华), Wu Y-T(武耀廷), Huang N-T(黄乃泰), Guo W-Z(郭旺珍), Zhu X-F(朱协飞), Zhang T-Z(张天真). QTL analysis of epistatic effects on yield and yield component traits for elite hybrid derived RILs in Upland cotton. Acta Agron Sin (作物学报), 2007, 33(11): 1755–1762 (in Chinese with English abstract)


[7] Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王健康). Genetic System of Quantitative Traits in Plants (植物数量性状遗传体系). Beijing: Science Press, 2003: 10−16 (in Chinese)


[8] Guan R-Z(管荣展), Gai J-Y(盖钧镒). Applications of Diallel Cross Design to the Improvement of Heterosis of Elite Crosses and the Distinction Loci Groups among Parents. PhD Dissertation of Nanjing Agriculture University, 1997 (in Chinese with English abstract)


[9] Guan R-Z(管荣展), Gai J-Y(盖钧镒). Detection of differential QTLs among a group of parents under additive-dominance model by use of diallel design. J Biomath (生物数学学报), 2001, 16(5): 545−552 (in Chinese with English abstract)


[10] Gai J-Y(盖钧镒), Guan R-Z(管荣展), Wang J-K(王建康). Methods of genetic experiments for the detection of QTL system in plants. World Sci-Tech R&D (世界科技研究与发展), 1999, 21(1): 34−40 (in Chinese with English abstract)


[11] Qi C-K(戚存扣), Gai J-Y(盖钧镒). Analysis of genotype difference and gene effects of flowering time of rapeseed (Brassica napus L.) from various ecological origins. Acta Agron Sin (作物学报), 2002, 28(4): 455−460 (in Chinese with English abstract)


[12] Yang Q-L(杨庆利), Wang J-F(王建飞), Ding J-J(丁俊杰), Zhang H-S(张红生). Inheritance of salt tolerance in some rice (Oryza sativa L.) cultivars at the seedling stage. J Nanjing Agric Univ (南京农业大学学报), 2004, 27(4): 6−10 (in Chinese with English abstract)


[13] Kutner M H, Nachtsheim C J, Neter J. Applied Linear Regression Models, 4th edn. Beijing: Higher Education Press, 2005. pp 343−383


[14] Wan J-M(万建民). Perspectives of molecular design breeding in crops. Acta Agron Sin (作物学报), 2006, 32(4): 455−462 (in Chinese with English abstract)


[15] Tian J-C(田纪春), Den Z-Y(邓志英), Mu L-H(牟林辉). Molecular design breeding in crops and breeding of new super-wheat cultivars. Shandong Agric Sci (山东农业科学), 2006, (5): 30−32 (in Chinese with English abstract)
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!