作物学报 ›› 2010, Vol. 36 ›› Issue (3): 533-538.doi: 10.3724/SP.J.1006.2010.00533
• 研究简报 • 上一篇
赵世领,孙立荣,张换,马丽娅,陆宝石,郝福顺*
ZHAO Shi-Ling,SUN Li-Rong,ZHANG Huan,MA Li-Ya,LU Bao-Shi,HAO Fu-Shun*
摘要:
以蚕豆(Vicia faba L.)为材料,利用pH荧光探针SNARF-1-AM和激光共聚焦显微镜研究外源一氧化氮(nitric oxide,NO)对表皮条保卫细胞胞质pH变化以及pH对NO诱导气孔关闭的影响。结果表明,与对照相比,100 μmol L–1 NO供体硝普钠(sodium nitroprusside, SNP)可显著增加保卫细胞胞质pH (从6.91升高到7.19,增加约0.28个单位),并诱导气孔关闭。NO清除剂c-PTIO和弱酸丁酸均能显著抑制SNP诱导的保卫细胞胞质碱化和气孔关闭,而弱碱苄胺则促进NO诱导的胞质碱化和气孔关闭,另外,不产生NO的SNP结构类似物Fe(II)CN和Fe(III)CN不能诱导保卫细胞胞质碱化和气孔关闭,说明保卫细胞胞质碱化介导了外源NO诱导的气孔关闭。未发现NO诱导保卫细胞胞质碱化过程中液泡和细胞壁的pH发生显著变化,说明该过程中,胞质的质子可能主要不是进入液泡或细胞壁。
[1] Lamattina L, García-Mata C, Graziano M, Pagnussat G. Nitric oxide: The versatility of an extensive signal molecule. Annu Rev Plant Biol, 2003, 54: 109-136[2] Neill S J, Desikan R, Hancock J T. Nitric oxide signalling in plants. New Phyt, 2003, 159: 11-35[3] Delledonne M. NO news is good news for plants. Curr Opin Plant Biol, 2005, 8: 390-396[4] Liu W-Z(刘维仲), Zhang R-J(张润杰), Pei Z-M(裴真明), He Y-Q(何奕昆). Investigation on functions of nitric oxide as a signal molecular in plants: Advance and perspective. Prog Nat Sci (自然科学进展), 2008, 18 (1): 10-24 (in Chinese)[5] Liu X, Zhang S Q, Lou C H. Involvement of nitric oxide in the signal transduction of salicylic acid regulating stomatal movement. Chin Sci Bull, 2003, 48: 449-452[6] Liu X, Shi W L, Zhang S Q, Lou C H. Nitric oxide involved in signal transduction of jasmonic acid-induced stomatal closure of Vicia faba L. Chin Sci Bull, 2005, 50: 520-525[7] Melotto M, Underwood W, Koczan J, Nomura K, He S Y. Plant stomata function in innate immunity against bacterial invasion. 2006, Cell, 126: 969-980[8] Garcia-Mata C, Lamattina L. Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways. Nitric Oxide, 2007, 17: 143-151[9] Kolla V A, Raghavendra A S. Nitric oxide as an intermediate in bicarbonate-induced stomatal closure in Pisum sativum. Physiol Plant, 2007, 130: 91-98[10] Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y. The coronatine-insensitive 1 mutation reveals the hormone signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol, 2007, 143: 1398-1407[11] Zhang X, Takemiya A, Kinoshita T, Shimazaki K. Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signaling pathways in Vicia guard cells. Plant Cell Physiol, 2007, 48: 715-723[12] Song X G, She X P, Zhang B. Carbon monoxide-induced stomatal closure in Vicia faba is dependent on nitric oxide synthesis. Physiol Plant, 2008, 132: 514-525[13] Desikan R, Griffiths R, Hancock J, Neill S. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA,2002, 99: 16314-16318[14] Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I. Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot, 2008, 59: 165-176[15] Lü D(吕东), Zhang X(张骁), Jiang J(江静), An G-Y(安国勇), Zhang L-R(张玲瑞), Song C-P(宋纯鹏). NO may function in the downstream of H2O2 in ABA-induced stomatal closure in Vicia faba L. Acta Phytophysiol Sin (植物生理与分子生物学学报), 2005, 31(1): 62–70 (in Chinese with English abstract) [16] Bright J, Desikan R, Hancock J T, Weir L S, Neill S J. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J, 2006, 45: 113-122[17] Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt M R. Nitric oxide regulates K+ and Cl– channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA, 2003, 100: 11116-11121[18] Sokolovski S, Blatt M R. Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. Plant Physiol, 2004, 136: 4275-4284 [19] Wilkinson S. pH as a stress signal. Plant Growth Regul, 1999, 29: 87-99[20] Felle H H. pH: Signal and messenger in plant cells. Plant Biol, 2001, 3: 577-591[21] Irving H R, Gehring C A, Parish R W. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc Natl Acad Sci USA, 1992, 89: 1790-1794[22] Blatt M R, Armstrong F. K+ channels of stomatal guard cells: Abscisic acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta, 1993, 191: 330-341[23] Gehring C A, Irving H R, McConchie R, Parish R W. Jasmonates induce intracellular alkalization and closure of Paphiopedilum guard cell. Ann Bot, 1997, 80: 485-489[24] Grabov A, Blatt M R. Parallel control of the inward rectifier K+ channel by cytosolic free Ca2+ and pH in Vicia guard cells. Planta, 1997, 201: 84-95[25] Suhita D, Raghavendra A S, Kwak J M, Vavasseur A. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol, 2004, 134: 1536-1545[26] Gonugunta V K, Srivastava N, Puli M R, Raghavendra A S. Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. Plant Cell Environ, 2008, 31: 1717-1724[27] Li S, Assmann S M, Albert R. Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol, 2006, 4: 1732-1747[28] Zhang X, Dong F C, Gao J F, Song C P. Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure. Cell Res, 2001, 11: 37-43[29] Kwak J M, Mori I C, Pei Z M, Leonhardt N, Torres M A, Dangl J L, Bloom R E, Bodde S, Jones J D, Schroeder J I. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J, 2003, 22: 2623-2633[30] Torres M A, Dangl J L. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol, 2005, 8: 397-403[31] Rober-Kleber N, Albrechtova J T, Fleig S, Fleig S, Huck N, Michalke W, Wagner E, Speth V, Neuhaus G, Fischer-Iglesias C. Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiol, 2003, 131: 1302-1312[32] Bethke P C, Libourel I G L, Reinöhl V, Jones R L. Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta, 2006, 223: 805-812 |
[1] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[2] | 陈鹏飞,徐新刚. 无人机影像拼接软件在农业中应用的比较研究[J]. 作物学报, 2020, 46(7): 1112-1119. |
[3] | 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275. |
[4] | 杨瑞娟,白建荣,闫蕾,苏亮,王秀红,李锐,张丛卓. 玉米低磷胁迫诱导型强启动子P1502-ZmPHR1的克隆与表达分析[J]. 作物学报, 2018, 44(7): 1000-1009. |
[5] | 樊艳平,张耀文,赵雪英,张仙红. 抗豆象绿豆胰蛋白酶抑制剂活性及理化性质[J]. 作物学报, 2017, 43(11): 1696-1704. |
[6] | 寇莹莹,宋英今,杨少辉,王洁华. 植酸酶phyA基因的密码子优化及其在大豆中的表达[J]. 作物学报, 2016, 42(12): 1798-1804. |
[7] | 肖阳,张弘,于向鸿,李红丹,原换换,苏亮,孙蕾,杨宗举,杨建平. 如何制作分子生物学论文的图版?[J]. 作物学报, 2016, 42(03): 456-465. |
[8] | 李新,肖麓,杜德志. 青海大黄油菜Brsc1基因的精细定位及图谱整合[J]. 作物学报, 2015, 41(07): 1039-1046. |
[9] | 杨帆,陈其皎,高翔,赵万春,强琴琴,吴丹,孟敏. 一年生簇毛麦α-醇溶蛋白基因的分离、原核表达与功能鉴定[J]. 作物学报, 2014, 40(08): 1340-1349. |
[10] | 王震,范晓静,张淼,张芳凝,李桂东,马翎健*. ATP合成相关基因在小麦BNS不育系育性转换中的差异表达[J]. 作物学报, 2014, 40(08): 1501-1505. |
[11] | 姜俊烨,杨涛,王芳,方俐,仲伟文,关建平,宗绪晓. 国内外蚕豆核心种质SSR遗传多样性对比及微核心种质构建[J]. 作物学报, 2014, 40(07): 1311-1319. |
[12] | 张晓霞, 焦浈, 董振营, 李世明, 王燃, 凌宏清, 秦广雍, 王道文. 普通小麦品种小偃54中α/β-醇溶蛋白编码基因的克隆与序列分析[J]. 作物学报, 2011, 37(08): 1497-1502. |
[13] | 王海飞, 关建平, 马钰, 孙雪莲, 宗绪晓. 中国蚕豆种质资源ISSR标记遗传多样性分析[J]. 作物学报, 2011, 37(04): 595-602. |
[14] | 朱西平,李鑫,李雅轩,晏月明. 普通小麦及近缘粗山羊草α-醇溶蛋白基因的克降、定位与进化分析[J]. 作物学报, 2010, 36(4): 580-589. |
[15] | 杨静静, 李亚宁, 李星, 刘大群. 小麦与叶锈菌互作体系中G蛋白α、β亚基的表达及其与抗病蛋白和活性氧代谢的关系[J]. 作物学报, 2010, 36(12): 2028-2034. |
|