欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (3): 533-538.doi: 10.3724/SP.J.1006.2010.00533

• 研究简报 • 上一篇    

胞质碱化介导了外源一氧化氮诱导的蚕豆气孔关闭

赵世领,孙立荣,张换,马丽娅,陆宝石,郝福顺*   

  1. 河南省植物逆境生物学重点实验室 / 河南大学生命科学学院,河南开封 475004
  • 收稿日期:2009-07-17 修回日期:2009-12-08 出版日期:2010-03-12 网络出版日期:2010-01-22
  • 通讯作者: 郝福顺, E-mail: haofsh@henu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30670183)和河南省教育厅基金项目(20071800040)资助。

Cytoplasmic Alkalization Mediates Exogenous Nitric Oxide-Induced Stomatal Closure in Vicia faba

ZHAO Shi-Ling,SUN Li-Rong,ZHANG Huan,MA Li-Ya,LU Bao-Shi,HAO Fu-Shun*   

  1. Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
  • Received:2009-07-17 Revised:2009-12-08 Published:2010-03-12 Published online:2010-01-22
  • Contact: HAO Fu-Shun, E-mail: haofsh@henu.edu.cn

摘要:

以蚕豆(Vicia faba L.)为材料,利用pH荧光探针SNARF-1-AM和激光共聚焦显微镜研究外源一氧化氮(nitric oxide,NO)对表皮条保卫细胞胞质pH变化以及pH对NO诱导气孔关闭的影响。结果表明,与对照相比,100 μmol L–1 NO供体硝普钠(sodium nitroprusside, SNP)可显著增加保卫细胞胞质pH (从6.91升高到7.19,增加约0.28个单位),并诱导气孔关闭。NO清除剂c-PTIO和弱酸丁酸均能显著抑制SNP诱导的保卫细胞胞质碱化和气孔关闭,而弱碱苄胺则促进NO诱导的胞质碱化和气孔关闭,另外,不产生NO的SNP结构类似物Fe(II)CN和Fe(III)CN不能诱导保卫细胞胞质碱化和气孔关闭,说明保卫细胞胞质碱化介导了外源NO诱导的气孔关闭。未发现NO诱导保卫细胞胞质碱化过程中液泡和细胞壁的pH发生显著变化,说明该过程中,胞质的质子可能主要不是进入液泡或细胞壁。

关键词: 一氧化碳, pH, 蚕豆, 气孔关闭

Abstract:

The effects of exogenous NO on changes in cytosolic pH of guard cells from epidermal fragments and of the pH on NO-induced stomatal closure in Vicia faba were investigated by using a pH specific fluorescence probe SNARF-1-AM and a confocal laser scanning microscopy. The results showed that treatments with 100 μmol L–1 sodium nitroprusside (SNP), a widely used NO donor, led to a significant increase in cytosolic pH (from 6.91 to 7.19, i.e. 0.28 pH unit) and stomatal closure in comparison with the control. Furthermore, SNP-induced cytosolic alkalization and stomatal closure were significantly inhibited by NO scavenger c-PTIO or weak acid butyrate, and promoted by the weak base benzylamine. Whereas two structural analogs of SNP such as Fe(II)CN and Fe(III)CN, which can not release NO, failed to induce guard cell cytoplasmic alkalization and stomatal closure. These findings suggest that cytoplasmic alkalization of guard cells mediates NO-induced stomatal closure. In addition, pH in guard cell vacuoles and cell walls was measured during the cytosolic alkalization. However, no significant changes of pH in the two regions were found, implying that the cytoplasmic protons of guard cells may not go into vacuoles or cell walls during the NO-promoted alkalization in Vicia faba.

Key words: Nitric oxide, pH, Vicia faba, Stomatal closure

[1] Lamattina L, García-Mata C, Graziano M, Pagnussat G. Nitric oxide: The versatility of an extensive signal molecule. Annu Rev Plant Biol, 2003, 54: 109-136

[2] Neill S J, Desikan R, Hancock J T. Nitric oxide signalling in plants. New Phyt, 2003, 159: 11-35

[3] Delledonne M. NO news is good news for plants. Curr Opin Plant Biol, 2005, 8: 390-396

[4] Liu W-Z(刘维仲), Zhang R-J(张润杰), Pei Z-M(裴真明), He Y-Q(何奕昆). Investigation on functions of nitric oxide as a signal molecular in plants: Advance and perspective. Prog Nat Sci (自然科学进展), 2008, 18 (1): 10-24 (in Chinese)

[5] Liu X, Zhang S Q, Lou C H. Involvement of nitric oxide in the signal transduction of salicylic acid regulating stomatal movement. Chin Sci Bull, 2003, 48: 449-452

[6] Liu X, Shi W L, Zhang S Q, Lou C H. Nitric oxide involved in signal transduction of jasmonic acid-induced stomatal closure of Vicia faba L. Chin Sci Bull, 2005, 50: 520-525

[7] Melotto M, Underwood W, Koczan J, Nomura K, He S Y. Plant stomata function in innate immunity against bacterial invasion. 2006, Cell, 126: 969-980

[8] Garcia-Mata C, Lamattina L. Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways. Nitric Oxide, 2007, 17: 143-151

[9] Kolla V A, Raghavendra A S. Nitric oxide as an intermediate in bicarbonate-induced stomatal closure in Pisum sativum. Physiol Plant, 2007, 130: 91-98

[10] Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y. The coronatine-insensitive 1 mutation reveals the hormone signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol, 2007, 143: 1398-1407

[11] Zhang X, Takemiya A, Kinoshita T, Shimazaki K. Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signaling pathways in Vicia guard cells. Plant Cell Physiol, 2007, 48: 715-723

[12] Song X G, She X P, Zhang B. Carbon monoxide-induced stomatal closure in Vicia faba is dependent on nitric oxide synthesis. Physiol Plant, 2008, 132: 514-525

[13] Desikan R, Griffiths R, Hancock J, Neill S. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA,2002, 99: 16314-16318

[14] Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I. Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot, 2008, 59: 165-176

[15] Lü D(吕东), Zhang X(张骁), Jiang J(江静), An G-Y(安国勇), Zhang L-R(张玲瑞), Song C-P(宋纯鹏). NO may function in the downstream of H2O2 in ABA-induced stomatal closure in Vicia faba L. Acta Phytophysiol Sin (植物生理与分子生物学学报), 2005, 31(1): 62–70 (in Chinese with English abstract)

[16] Bright J, Desikan R, Hancock J T, Weir L S, Neill S J. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J, 2006, 45: 113-122

[17] Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt M R. Nitric oxide regulates K+ and Cl– channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA, 2003, 100: 11116-11121

[18] Sokolovski S, Blatt M R. Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. Plant Physiol, 2004, 136: 4275-4284

[19] Wilkinson S. pH as a stress signal. Plant Growth Regul, 1999, 29: 87-99

[20] Felle H H. pH: Signal and messenger in plant cells. Plant Biol, 2001, 3: 577-591

[21] Irving H R, Gehring C A, Parish R W. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc Natl Acad Sci USA, 1992, 89: 1790-1794

[22] Blatt M R, Armstrong F. K+ channels of stomatal guard cells: Abscisic acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta, 1993, 191: 330-341

[23] Gehring C A, Irving H R, McConchie R, Parish R W. Jasmonates induce intracellular alkalization and closure of Paphiopedilum guard cell. Ann Bot, 1997, 80: 485-489

[24] Grabov A, Blatt M R. Parallel control of the inward rectifier K+ channel by cytosolic free Ca2+ and pH in Vicia guard cells. Planta, 1997, 201: 84-95

[25] Suhita D, Raghavendra A S, Kwak J M, Vavasseur A. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol, 2004, 134: 1536-1545

[26] Gonugunta V K, Srivastava N, Puli M R, Raghavendra A S. Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. Plant Cell Environ, 2008, 31: 1717-1724

[27] Li S, Assmann S M, Albert R. Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol, 2006, 4: 1732-1747

[28] Zhang X, Dong F C, Gao J F, Song C P. Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure. Cell Res, 2001, 11: 37-43

[29] Kwak J M, Mori I C, Pei Z M, Leonhardt N, Torres M A, Dangl J L, Bloom R E, Bodde S, Jones J D, Schroeder J I. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J, 2003, 22: 2623-2633

[30] Torres M A, Dangl J L. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol, 2005, 8: 397-403

[31] Rober-Kleber N, Albrechtova J T, Fleig S, Fleig S, Huck N, Michalke W, Wagner E, Speth V, Neuhaus G, Fischer-Iglesias C. Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiol, 2003, 131: 1302-1312

[32] Bethke P C, Libourel I G L, Reinöhl V, Jones R L. Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta, 2006, 223: 805-812

[1] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[2] 陈鹏飞,徐新刚. 无人机影像拼接软件在农业中应用的比较研究[J]. 作物学报, 2020, 46(7): 1112-1119.
[3] 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275.
[4] 杨瑞娟,白建荣,闫蕾,苏亮,王秀红,李锐,张丛卓. 玉米低磷胁迫诱导型强启动子P1502-ZmPHR1的克隆与表达分析[J]. 作物学报, 2018, 44(7): 1000-1009.
[5] 樊艳平,张耀文,赵雪英,张仙红. 抗豆象绿豆胰蛋白酶抑制剂活性及理化性质[J]. 作物学报, 2017, 43(11): 1696-1704.
[6] 寇莹莹,宋英今,杨少辉,王洁华. 植酸酶phyA基因的密码子优化及其在大豆中的表达[J]. 作物学报, 2016, 42(12): 1798-1804.
[7] 肖阳,张弘,于向鸿,李红丹,原换换,苏亮,孙蕾,杨宗举,杨建平. 如何制作分子生物学论文的图版?[J]. 作物学报, 2016, 42(03): 456-465.
[8] 李新,肖麓,杜德志. 青海大黄油菜Brsc1基因的精细定位及图谱整合[J]. 作物学报, 2015, 41(07): 1039-1046.
[9] 杨帆,陈其皎,高翔,赵万春,强琴琴,吴丹,孟敏. 一年生簇毛麦α-醇溶蛋白基因的分离、原核表达与功能鉴定[J]. 作物学报, 2014, 40(08): 1340-1349.
[10] 王震,范晓静,张淼,张芳凝,李桂东,马翎健*. ATP合成相关基因在小麦BNS不育系育性转换中的差异表达[J]. 作物学报, 2014, 40(08): 1501-1505.
[11] 姜俊烨,杨涛,王芳,方俐,仲伟文,关建平,宗绪晓. 国内外蚕豆核心种质SSR遗传多样性对比及微核心种质构建[J]. 作物学报, 2014, 40(07): 1311-1319.
[12] 张晓霞, 焦浈, 董振营, 李世明, 王燃, 凌宏清, 秦广雍, 王道文. 普通小麦品种小偃54中α/β-醇溶蛋白编码基因的克隆与序列分析[J]. 作物学报, 2011, 37(08): 1497-1502.
[13] 王海飞, 关建平, 马钰, 孙雪莲, 宗绪晓. 中国蚕豆种质资源ISSR标记遗传多样性分析[J]. 作物学报, 2011, 37(04): 595-602.
[14] 朱西平,李鑫,李雅轩,晏月明. 普通小麦及近缘粗山羊草α-醇溶蛋白基因的克降、定位与进化分析[J]. 作物学报, 2010, 36(4): 580-589.
[15] 杨静静, 李亚宁, 李星, 刘大群. 小麦与叶锈菌互作体系中G蛋白α、β亚基的表达及其与抗病蛋白和活性氧代谢的关系[J]. 作物学报, 2010, 36(12): 2028-2034.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!