欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (05): 876-881.doi: 10.3724/SP.J.1006.2011.00876

• 耕作栽培·生理生化 • 上一篇    下一篇

旱稻×稗草杂交后代YF2-1光合作用气体交换、叶绿素荧光和抗氧化酶系统对渗透胁迫的响应

丁在松1,王春艳2,关东明2,赵凤悟3,赵明1,*   

  1. 1 中国农业科学院作物科学研究所 / 农业部作物生理生态与栽培重点实验室, 北京 100081;2 中国矿业大学(北京)化学与环境工程学院, 北京 100083;3 河北省农林科学院旱作农业研究所,河北衡水 053000
  • 收稿日期:2010-10-09 修回日期:2011-03-08 出版日期:2011-05-12 网络出版日期:2011-03-24
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118605)和国家科技支撑计划粮丰工程项目(2006BAD02A13)资助。

Response of Gas Exchange, Chlorophyll a Fluorescence and Anti-oxidation Enzymes Activities to Osmotic Stress in an Upland Rice Progeny YF2-1 Derived from Oryza sativa × Echinochloa caudata

DING Zai-Song1,WANG Chun-Yan2,GUAN Dong-Ming2,ZHAO Feng-Wu3,ZHAO Ming1,*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Production, Ministry of Agriculture, Beijing 100081, China; 2 Chemistry and Environment Engineering College, China University of Mining & Technology, Beijing 100083, China; 3 Dry Land Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui 053000, China
  • Received:2010-10-09 Revised:2011-03-08 Published:2011-05-12 Published online:2011-03-24

摘要: 为了明确旱稻×稗草杂交后代YF2-1对渗透胁迫的耐性是否得到了改善,以YF2-1及其母本旱稻品种H65为材料,在苗期采用PEG-6000进行渗透胁迫处理,研究它们的气体交换参数、叶绿素荧光参数及抗氧化酶活性对渗透胁迫的响应。结果表明,在渗透胁迫处理下,YF2-1更能维持较高的净光合速率(Pn)和气孔导度(Gs)。这可能与YF2-1具有更好的持水能力,并能有效地通过热耗散(NPQ高)消耗过剩光能,通过高活性的抗氧化酶诱导来清除活性氧,从而避免活性氧伤害相关。的确,旱稻与稗草的远源杂交提高了旱稻对渗透胁迫的抗性。

关键词: 旱稻, 远缘杂交, 光合特征, 渗透胁迫

Abstract: Wild species generally have higher stress resistance than cultivated crops and are utilized as the sources of stress resistance genes in stress resistance improvement of crops. In rice, its wild relatives have been used to improve photosynthesis, yield and stress resistance. YF2-1 is obtained by distant cross between Oryza sativa and Echinochloa caudate. In order to assess its osmotic stress resistance on physiological level, gas exchange, chlorophyll a fluorescence and antioxidation enzyme activities under osmotic stress simulated by PEG-6000 were studied in seedlings of upland rice YF2-1 and H65.The results showed that YF2-1 maintained higher net photosynthetic rate and stomatal conductance under osmotic stress condition, indicating YF2-1 suffered less inhibition in photosynthesis. This may be related to its higher water retaining capacity and its effective functions for high excessive light energy dispersing (higher NPQ) and higher activities of anti-oxidation enzymes SOD, POD, and CAT, effectively clearing AOS produced by excessive light energy. The result shows that the distant crossing may increase the resistance to osmotic stress in rice.

Key words: Upland rice, Distant crossing, Photosynthetic characteristics, Osmotic stress

[1]Luo L-J(罗利军), Zhang Q-F(张启发). The status and strategy on drought resistance of rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2001, 15(3): 209–214 (in Chinese with English abstract)
[2]Teng S(滕胜), Qian Q(钱前), Zeng D-L(曾大力). Analysis of gene loci and epistasis for drought tolerance in seedling stage of rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2002, 29(3): 235−240 (in Chinese with English abstract)
[3]Zhao M, Lafitte H R, Sacks E, Dimayuga G, Tina L, Acuna B. Perennial O. sativa × O. rufipogon interspecific hybrids: I. Photosynthetic characteristics and their inheritance. Field Crops Res, 2008, 106: 203-213
[4]Zhong D-B(钟代彬), Luo L-J(罗利军), Ying C-S(应存山). Advances on transferring elite gene from wild rice species into cultivated Rice. Chin J Rice Sci (中国水稻科学), 2000, 14(2): 103–106 (in Chinese with English abstract)
[5]Chen F-Y(陈芳远), Peng Y-H(彭月华). Isoenzyme and phenotype analysis on the stable strains from the hybrid descendances of rice and Caudate themeda. J Guangxi Agric & Biol Sci (广西农学院学报), 1988, 7(4): 13-19 (in Chinese)
[6]Duan X-L(段晓岚), Chen S-B(陈善葆). Genetic Study on the esterase isoenzyme in hybrid between rice and sorghum. Acta Agron Sin (作物学报), 1985, 11(3): 173–180 (in Chinese with English abstract)
[7]Huang Q-C(黄群策). Effect of Oryza sativa × Pennisetum alopecuroides. Chin J Rice Sci (中国水稻科学), 2001, 14(1): 48–50 (in Chinese with English abstract)
[8]Farooq S. Problems and prospects of rice × kallar grass hybridization. Pakistan J Sci Ind Res, 1987, 30: 660–663
[9]Li H-M(李慧敏), Zhao F-W(赵凤梧), Li A-G(李爱国), Bai L-R(白丽荣), Zhang J(张建), Zhao M(赵明), Wang Z-M(王志敏), Zhao X-Q(赵秀琴). Study on seed set and heteroses of distant cross of upland rice (Oryza sativa) × long-awn-barnyard grass (Echinochloa caudata). Acta Agric Nucl Sin (核农学报), 2003, 17(1): 11–15 (in Chinese with English abstract)
[10]Zhao F-W(赵凤梧), Li H-M(李慧敏), Zhao M(赵明), Liu D-C(刘冬成), Wang Z-M(王志敏), Zhao X-Q(赵秀琴), Liu Y(刘勇). Studies on distant hybridization of upland rice (O. sativa) × barnyard grass (E. caudata). Acta Agric Boreali-Sin (华北农学报), 2003, 18(Special issue): 76–80 (in Chinese with English abstract))
[11]Wang C-Y(王春艳), Ding Z-S(丁在松), Zhao M(赵明), Guan D-M(关东明). Drought resistance of rice progenies from distant crossing between Oryza sativa × Echinochloa caudata. Crops (作物杂志), 2008, 122(1): 26–28 (in Chinese with English abstract)
[12]Xu D-Q(许大全), Shen Y-G(沈允钢). Restriction factors of photosynthesis. In: Yu S-W(余叔文), Tang Z-C(汤章城), eds. Plant Physiology and Molecular Biology (植物生理与分子生物学), 2nd ed. Beijing: Science Press, 1998. p 269 (in Chinese)
[13]Flowers M D, Fiscus E L, Burkey K O, Booker F L, Dubois J B. Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exp Bot, 2007, 61: 190–198
[14]Naumann J C, Young D R, Anderson J E. Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiol Plant, 2007, 131: 422–433
[15]Lootens P, Waes J V, Carlier L. Effect of a short photoinhibition stress on photosynthesis, chlorophyll a fluorescence, and pigment contents of different maize cultivars. Can a rapid and objective stress indicator be found? Photosynthetica, 2004, 42: 187–192
[16]Sayed O H. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 2003, 41: 321–330
[17]Giannoplitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309–314
[18]Kraus T E, Fletcher R A. Paclobutrazol protects wheat seedlings from heat and paraqual injury. Is detoxification of active oxygen involve? Plant Cell Physiol, 1994, 35: 45–52
[19]Yu Q, Rengel Z. Drought and salinity differentially influence activities of superoxide dismutases in narrow-leafed lupines. Plant Sci, 1999, 142: 1–11
[20]Levine A. Oxidative stress as a regulator of environmental responses in plants. In: Lerner H R ed. Plant Responses to Environmental Stresses from Phytohormones to Genome Reorganization. Marcel Dekker Inc., NY, 1999. pp 247–264
[21]Foyer C H, Noctor G. Oxygen processing in photosynthesis: regulation and signaling. New Phytol, 2000, 146: 359–388
[22]Porcel R, Barea J M, Ruiz-Lozano J M. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol, 2003, 157: 135–143
[23]Zhang X-Z(张宪政), Su Z-S(苏正淑). Introduction of researches into physiological damage to crops under water deficit. J Shenyang Agric Univ (沈阳农业大学学报), 1996, 27(1): 85–96 (in Chinese with English abstract)
[24]Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ, 2002, 25: 275-294
[25]Cornic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends Plant Sci, 2000, 5: 187–188
[26]Tezara W, Mitchell V J, Driscoll S D, Lawlor D W. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 1999, 1401: 914–917
[27]Peltzer D, Dreyer E, Polle A. Temperature dependencies of antioxidative enzymes in two contrasting species. Plant Physiol Biochem, 2002, 40: 141–150
[28]Reddya A R, Chaitanyaa K V, Vivekanandanb M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol, 2004, 161: 1189–1202
[29]Shao H-B, Liang Z S, Shao M A, Wang B C. Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling stage. Colloids Surf. B: Biointerf, 2005, 42: 19–25
[1] 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究[J]. 作物学报, 2020, 46(12): 2008-2016.
[2] 申状状,李昱樱,荣二花,吴玉香. 陆地棉和野生斯特提棉种间异源六倍体的合成与性状鉴定[J]. 作物学报, 2019, 45(4): 628-634.
[3] 陈四龙,程增书,宋亚辉,王瑾,刘义杰,张朋娟,李玉荣. 高产高油花生品种的光合与物质生产特征[J]. 作物学报, 2019, 45(2): 276-288.
[4] 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769.
[5] 李敏,于太飞,徐兆师,张双喜,闵东红,陈明,马有志,柴守诚,郑炜君. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(08): 1161-1169.
[6] 左青松,蒯婕,杨士芬,曹石,杨阳,吴莲蓉,孙盈盈,周广生,吴江生. 不同氮肥和密度对直播油菜冠层结构及群体特征的影响[J]. 作物学报, 2015, 41(05): 758-765.
[7] 葛淑娟,孙爱清,刘鹏,张杰道,董树亭. 玉米响应渗透胁迫的数字基因表达谱分析[J]. 作物学报, 2014, 40(07): 1164-1173.
[8] 刘自刚,张长生,孙万仓,杨宁宁,王月,何丽,赵彩霞,武军艳,方彦,曾秀存. 不同生态区冬前低温下白菜型冬油菜不同抗寒品种(系)的比较[J]. 作物学报, 2014, 40(02): 346-354.
[9] 苏家秀, 谭学林, 徐津, 李伟华, 海梅荣, 王婷. 同核异质滇I型粳稻不育系及其保持系的光合特性[J]. 作物学报, 2011, 37(11): 2075-2084.
[10] 魏凤桐, 陶洪斌, 王璞. 旱稻297非结构性碳水化合物的生产与产量构成因子的关系[J]. 作物学报, 2010, 36(12): 2135-2142.
[11] 万小荣,莫爱琼,郭小建,杨妙贤,余土元,曹锦萍. 含异位表达花生AhNCED1基因的拟南芥提高耐渗透胁迫能力[J]. 作物学报, 2010, 36(09): 1440-1449.
[12] 姜慧芳;任小平;黄家权;雷永;廖伯寿. 野生花生脂肪酸组成的遗传变异及远缘杂交创造高油酸低棕榈酸花生新种质[J]. 作物学报, 2009, 35(1): 25-32.
[13] 段桃利;牟锦毅;唐祈林;荣廷昭;王培. 玉米与摩擦禾、薏苡的杂交不亲和性[J]. 作物学报, 2008, 34(09): 1656-1661.
[14] 王一平;魏兴华;华蕾;袁筱萍;余汉勇;徐群;汤圣祥. 不同地理来源旱稻种质资源的遗传多样性分析[J]. 作物学报, 2007, 33(12): 2034-2040.
[15] 石云鹭;丁在松;黄荣峰;王春艳;赵明. TERF1LeERF2双价基因旱稻及其逆境光合特性研究[J]. 作物学报, 2007, 33(09): 1488-1494.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!