欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (1): 25-32.doi: 10.3724/SP.J.1006.2009.00025

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

野生花生脂肪酸组成的遗传变异及远缘杂交创造高油酸低棕榈酸花生新种质

姜慧芳,任小平,黄家权,雷永,廖伯寿   

  1. 中国农业科学院油料作物研究所,湖北武汉 430062
  • 收稿日期:2008-05-14 修回日期:2008-07-17 出版日期:2009-01-12 网络出版日期:2008-11-17
  • 基金资助:

    本研究由国家自然科学基金项目(30571132),国家科技支撑计划项目(2006BAD13B05-2),国家科技基础条件平台项目(2005DKA21002-13),农作物种质资源保护项目(NB05-070401-32)资助

Genetic Variation of Fatty Acid Components in Arachis Species and development of Interspecific Hybrids with High Oleic and Low Palmitic Acids

JIANG Hui-Fang,REN Xiao-Ping,HUANG Jia-Quan,LEI Yong,LIAO Bo-Shou   

  1. Oil Crops Research Institute,Chinese Academy of Agricultural Sciences,Wuhan 430062,China
  • Received:2008-05-14 Revised:2008-07-17 Published:2009-01-12 Published online:2008-11-17

摘要:

以花生属19个近缘野生物种87份种质和113份栽野远缘杂交后代为材料, 系统分析野生花生脂肪酸组成的遗传变异及其在栽培种花生脂肪酸改良中的潜力。结果表明, 野生花生的棕榈酸含量与栽培种花生相似, 硬脂酸和油酸含量略低于栽培种花生, 亚油酸含量略高于栽培种。不同物种间以及同一物种内不同资源间的脂肪酸组成存在较大差异。A. rigonii棕榈酸含量较低, A. pusillaA. duranensis油酸含量较高, A. batizocoi亚油酸含量较高, A. rigoniiA. duranensis油酸和亚油酸含量变幅较大。发掘出油酸含量达60%以上的野生资源2(19-6, A. duranensis23-1, A. sp.), 亚油酸含量达40%以上的资源7, 其中A. rigonii(编号为11-4)亚油酸含量高达48%, 是目前所发现的花生资源中亚油酸含量最高的种质。远缘杂交后代脂肪酸的变异远远超过亲本间的差异, 而且不同组合间的棕榈酸、硬脂酸、油酸和亚油酸含量差异达显著或极显著水平。通过远缘杂交获得了6份油酸含量达64.0%以上且棕榈酸含量在8.5%以下的新种质, 其中yz8913-8油酸含量达67.85%, 比其栽培种亲本提高近30个百分点, 且棕榈酸含量仅7.60%SRAP检测表明, 6份远缘杂交后代除整合了亲本的DNA片段外, 还产生了新的DNA片段, 有的还丢掉了亲本的某些片段。农艺性状分析表明, 其中4份种质的综合农艺性状较好, 具有重要育种利用价值。

关键词: 野生花生, 脂肪酸, 遗传变异, 远缘杂交, 种质创新

Abstract:

Wild Arachis species are important resource for genetic improvement of the cultivated peanut (Arachis hypogaea L.). Fatty acid composition is highly crucial for peanut quality in terms of nutritional value and shelf life duration, thus increasing oleate and decreasing the saturated fatty acids such as palmitic and stearic acids has been important breeding objectives worldwide. In the present study, fatty acids of 87 wild Arachis accessions and 113 interspecific hybrid derivatives were tested. Considerable variation in fatty acid components was observed among the Arachis species involved. Among the saturated fatty acids, lowest content of palmitic acid was identified in A. rigonii. Among the unsaturated fatty acids, the highest oleic acid contents were found in A. pusilla and A. duranensis and the highest linoleic acid was in A. batizocoi. Two genotypes (A. duranensis with documented number as 19-6 and A. sp. with documented number as 23-1) with oleic acid content more than 60.0% were identified. Compared to the cultivated peanut, stearic and oleic acid contents were slightly lower and linoleic acid content was slightly higher in the wild species while palmitic acid content was similar to that in A. hypogaea. The interspecific hybrid derivatives had wider ranges of most fatty acids than their parents. The variation of contents of palmitic, stearic, oleic and linoleic acids among the hybrid derivatives was statistically significant. Six derivatives with oleic acid content over 64.0% and palmitic acid content less than 8.5% were identified, among which yz8913-8 had a high oleic acid content as 67.85% (30.0% higher than its parents) and a low palmitic acid as 7.60%. Based on sequence-related amplified polymorphism (SRAP) analysis, new bands were observed in all these 6 derivatives.

Key words: Arachis species, Fatty acids, Genetic diversity, Wide crosses, Genetic enhancement

[1] Wang Y-B(王耀波), Zhang Y-B(张艺兵), Zhang P(张鹏), Men A-J(门爱军). Perspectives and export promoting strategies in Chinese peanut industry after entering WTO. J Peanut Sci (花生学报), 2003, 32(suppl): 24–29(in Chinese)
[2] Liao B-S(廖伯寿). Competitiveness analysis of oil industry in China. J Peanut Sci (花生学报), 2003, 32(suppl): 11–15(in Chinese)
[3] Jiang H-F(姜慧芳), Duan N-X(段乃雄). The corrections of oil and oleic as well as linoleic acids in peanut seeds. Peanut Sci Tech (花生科技), 1993, (2): 4–5(in Chinese)
[4] Liu G-M(刘桂梅), Liang Z-P(梁泽萍). Seed quality of peanut germplasm in China. Oil crops China (中国油料), 1993, 15(1): 18–21(in Chinese)
[5] Jiang H-F(姜慧芳), Ren X-P(任小平), Huang J-Q(黄家权), Liao B-S(廖伯寿), Lei Y(雷永). Establishment of peanut mini core collection in China and finding of new resource with high oleat. Chin J Oil Crops Sci (中国油料作物学报), 2008, 30(3): 287–291(in Chinese with English abstract)
[6] Isleib T G, C T Yong, Knauft D A. Fatty acid genotypes of five Virginia-type cultivars. Crop Sci, 1996, 36: 556–558
[7] Mercer L C, Wynne J C, Young C T. Inheritance of fatty acid content in peanut oil. Peanut Sci, 1990, 17: 17–21
[8] Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in Florida breeding program. Peanut Sci, 1987, 14: 7–11
[9] Lei Y(雷永), Liao B-S(廖伯寿). Progress of peanut breeding for high oleate. Proceedings of the 5th National Peanut Workshop, Beijing: China Agricultural Science and Technology Press, 2007(in Chinese)
[10] Wan Y-S(万勇善), Tan Z(谭忠), Fan H(范晖), Li X-D(李向东), Zhang G-Y(张高英), Liu F-Z(刘凤珍), Wang S(王溯). Genetic effect of major fatty acid composition in groundnut. Chin J Oil Crops Sci (中国油料作物学报), 2002, 24(1): 26–28(in Chinese with an English abstract)
[11] Tian Y-Q(田永全). Nutritional function of fatty acids. Food Nutr China (中国食物与营养), 2007, (8): 51–52(in Chinese)
[12] Yao Y-Y(姚云游). Comparison of peanut oil and olive oil in nutritional value. China Oil (中国油脂), 2005, (4): 66–68(in Chinese with English abstract)
[13] Jung S, Powell G, Moore K, Annott A. The high oleate trait in cultivated peanut (Arachis hypogaea L.): II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000, 263: 806–811
[14] Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000, 263: 796–805
[15] Lopez Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz A K. Isolation and characterization of the 12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphism for the high oleat trait in Spanish market-type lines. Theor Appl Genet, 2000, 101: 79–805
[16] Lopez Y, Smith O D, Senseman S A, Rooney W L. Genetic factors influencing high oleic acid content in Spanish market-type peanut cultivars. Crop Sci, 2001, 41: 51–56
[17] Lopez Y, Nadaf H L, Smith O D, Simpson C E, Fritz A K. Expressed variants of 12-fatty acid desaturase for the high oleat trait in Spanish market-type peanut lines. Mol Breed, 2002, 9: 183–190
[18] Moore K M, Knauft D A. The inheritance of high oleic acid in peanut. J Hered, 1989, 80: 252–253
[19] Yin D M, Deng S Z, Zhan K H, Cui D Q. High-oleic peanut oils produces by HpRNA-mediated gene silencing of oleate desaturase. Plant Mol Biol Rep, 2007, 25: 154–163
[20] Ding J-P(丁锦平), Han Z-Q(韩柱强), Zhou R-Y(周瑞阳), Gao G-Q(高国庆), Yang Y-P(杨玉萍). Genetic analysis of oleic/linolei (O/L) ratio in peanut. Chin J Oil Crops Sci (中国油料作物学报), 2007, 29(3): 233–237(in Chinese with English abstract)
[21] Yu S-L(禹山林), Isleid T G. The inheritance of high oleic acid content in peanut of virginia type in USA. Chin J Oil Crops Sci (中国油料作物学报), 2000, 22(1): 34–37(in Chinese with English abstract)
[22] Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004, 108: 1492–1502
[23] Li D(李铎). Fatty acid components and health. Int Acad Dev (国际学术动态), 2007, (5): 12–13(in Chinese)
[24] Mallikarjuna N. Gene introgression from Arachis glabrata into A. hypogaea, A. duranensis and A. diogoi. Euphytica, 2002, 124: 99–105
[1] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[2] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[3] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[4] 鲁庚,唐鑫,陆俊杏,李丹,胡秋芸,胡田,张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究[J]. 作物学报, 2020, 46(8): 1283-1290.
[5] 郭建斌,黄莉,刘念,罗怀勇,周小静,陈伟刚,吴贝,淮东欣,任小平,姜慧芳. 利用RIL群体创制低山嵛酸花生新种质[J]. 作物学报, 2020, 46(5): 661-667.
[6] 陈影,张晟瑞,王岚,王连铮,李斌,孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系[J]. 作物学报, 2019, 45(7): 1038-1049.
[7] 侯智红,吴艳,程群,董利东,芦思佳,南海洋,甘卓然,刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系[J]. 作物学报, 2019, 45(6): 839-847.
[8] 郭建斌,吴贝,陈伟刚,黄莉,陈玉宁,周小静,罗怀勇,刘念,任小平,姜慧芳. 花生品种主要脂肪酸含量在不同生态区的稳定性[J]. 作物学报, 2019, 45(5): 676-682.
[9] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[10] 申状状,李昱樱,荣二花,吴玉香. 陆地棉和野生斯特提棉种间异源六倍体的合成与性状鉴定[J]. 作物学报, 2019, 45(4): 628-634.
[11] 张宇婷,鲁少平,金诚,郭亮. 甘蓝型油菜皖油20号种子不同部位油脂合成的转录调控分析[J]. 作物学报, 2019, 45(3): 381-389.
[12] 李建国,薛晓梦,张照华,王志慧,晏立英,陈玉宁,万丽云,康彦平,淮东欣,姜慧芳,雷永,廖伯寿. 单粒花生主要脂肪酸含量近红外预测模型的建立及其应用[J]. 作物学报, 2019, 45(12): 1891-1898.
[13] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[14] 简大为, 周阳, 刘宏伟, 杨丽, 买春艳, 于立强, 韩新年, 张宏军, 李洪杰. 利用功能标记揭示新疆小麦改良品种与地方品种的遗传变异[J]. 作物学报, 2018, 44(05): 657-671.
[15] 方彦,孙万仓,武军艳,刘自刚,董云,米超,马骊,陈奇,何辉立. 北方白菜型冬油菜的膜脂脂肪酸组分和ATPase活性对温度的响应[J]. 作物学报, 2018, 44(01): 95-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!