欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (1): 18-24.doi: 10.3724/SP.J.1006.2009.00018

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花后高温下水稻可溶性淀粉合酶同工型基因的表达模式

韦克苏1;张其芳1;程方民1*;钟连进1;陈能2;谢黎红2   

  1. 1浙江大学农业与生物技术学院,浙江杭州 310029;2中国水稻研究所/农业部稻米及制品质量检测中心,浙江杭州 310016
  • 收稿日期:2008-05-14 修回日期:2008-07-17 出版日期:2009-01-12 网络出版日期:2008-11-17
  • 基金资助:

    本研究由国家自然科学基金项目(30671228),教育部高等学校博士点专项科研基金项目(20070335104)资助

Expression Profiles of Rice Soluble Starch Synthase(SSS) Genes in Response to High Temperature Stress at Filling stage

WEI Ke-Su1,ZHANG Qi-Fang1,CHEN Fang-Min1,*,ZHONG Lian-Jin1,CHEN Neng2,XIE Li-Hong2   

  1. 1College of Agriculture and Biotechnology,Zhejiang University,Hangzhou 310029,China;2 Rice Product Quality Supervision and Inspection Center,Ministry of Agriculture/China National Rice Research Institute,Hangzhou 310006,China
  • Received:2008-05-14 Revised:2008-07-17 Published:2009-01-12 Published online:2008-11-17

摘要:

利用人工气候箱设高温(32℃)和适温(22℃)两个温度处理,结合实时荧光定量PCR技术,对水稻胚乳中可溶性淀粉合酶(SSS)8个主要同工型基因的表达特征及其温度响应进行了检测分析。结果表明,水稻SSS各同工型基因对花后高温胁迫的响应表达模式明显不同,SSSIIbSSSIIcSSSIIIbSSSIVa等同工型基因呈上调表达模式,而SSSIIaSSSIIIa等则呈下调表达模式;SSSISSSIIIa是水稻SSSs基因在胚乳中表达的主要形式,而其他6种同工型基因的相对表达量均较低;与SSSISSIIcSSSIIIbSSSIVb相比,水稻胚乳中SSSIIbSSSIIIaSSSIVa等同工型基因对高温胁迫的响应表达更敏感。

关键词: 实时定量PCR, 水稻, 高温胁迫, SSS基因, 同工型, 表达模式

Abstract:

The expression responses of eight soluble starch synthase (SSS) isoform genes involved in starch synthesis metabolism in rice endosperms were detected by using two temperature treatments (32℃ and 22℃ for the mean daily temperature, respectively) in chambers and real-time fluorescence quantitative PCR (FQ-PCR). The result showed that the expression patterns of SSS genes in rice endosperms under high temperature stress were isoform-dependent, with relatively high expression levels and the up-regulated patterns for some isoform genes (SSSIIb, SSSIIc, SSSIIIb, and SSSIVa, etc), but relatively low expression levels and the down-regulated patterns for other isoform genes (SSSIIa and SSSIIIa, etc); SSSI and SSSIIIa were highly expressed in rice endosperms during whole filling stages in two temperature treatments , implying that SSSI and SSSIIIa are two major isoform genes of SSS; the expressions of SSSIIb, SSSIIIa, and SSSIVa genes were much more sensitive to high temperature stress compared to those ofSSSI, SSIIc, SSSIIIb, and SSSIVb.

Key words: Real-time fluorescence quantitative PCR(FQ-PCR), Rice (Oryza sativa L.), High temperature, Soluble starch synthase(SSS), Isoform, Expression pattern

[1]Asaoka M, Okuno K, Sugimoto Y, Fuwa H. Effect of environmental temperature at the milky stage on amylose content and fine structure of amylopectin of waxy and nonwaxy endosperm starches of rice (Oryza sativa L.). Agric Biol Chem, 1985, 49: 373–379

[2]Zhong L J, Cheng F M, Sun Z X, Zhang G P. The deterioration of eating and cooking quality caused by high temperature during grain filling in early –season indica rice cultivars. J Agron Crop Sci, 2005,191: 218–225

[3]Nakamura Y, Yuki K, Park S Y, Ohya T. Carbohydrate metabolism in the developing endosperm of rice grain quality. Plant Cell Physiol, 1989, 30: 833–839

[4]Martha G, James Y, Kay D, Alan M M. Starch synthesis in the cereal endosperm. Curr Opin Plant Biol, 2003, 6:215–222

[5]Vandeputte G E, Delcour J A. From sucrose to starch granule to starch physical behavior: A focus on rice starch. Carbohydrate Polymer, 2004, 58: 245–266

[6]Cheng F-M(程方民), Zhong L-J(钟连进), Sun Z-X(孙宗修). Change of starch synthase in early indica rice grain and its response to air temperature at the filling stage. Sci Agric Sin (中国农业科学), 2003, 27(2): 201–206(in Chinese with English abstract)

[7]Keeling P L, Bacon P J, Holt D C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191: 342–348

[8]Li M-Y(李木英), Shi Q-H(石庆华), Hu Z-H(胡志红), Pan X-H(潘晓华), Tan X-M(谭雪明). Effects of high temperature stress on activity of amylosynthease in endosperm of early indica rice varieties. Sci Agric Sin (中国农业科学), 2007, 40(8): 1622–1629(in Chinese with English abstract)

[9]Myers A M, Morell M K, James M G, Ball S G. Recent progress toward understanding biosynthesis of the am ylopectin crysta1. Plant Physiol, 2000, 122: 989–997

[10]Craig J, Lioyd JR, Tomlinson K, Barber L, Edwards A, Wang T L, Martin C, Hedley C L, Smith A M. Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea endosperm. Plant Cell, 1998, 10: 413–426

[11]Edwards A, Fulton D C, Hylton C M, Jobling S A, Gidley M. A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J, 1999, 17: 251–261

[12]Nakamura Y. Towards a better understanding of the metabolic system for amylopeetin biosynthesis in plants-rice endosperm as a model tissue. Plant Cell Physiol, 2002, 43: 718–725

[13]Padmavathi D C, Peter L K. Chain-length specificities of maize starch synthase I enzyme-studies of ucanafinity and catalytic properties. Plant J, 2001, 25: 475–486

[14]Baba T, Nishihara M, Mizuno K. Identification, cDNA cloning, and gene expression of soluble starch synthase in rice (Oryza sativa L.) immature seeds. Plant Physiol, 1993, 103: 565–573

[15]Nishi A, Nakamura Y, Tanaka N, Satoh H. Biochemical and genetic analysis of the effects of amylose—extender mutation in rice endosperm. Plant Physiol, 2001, 127: 459–471

[16]Normita C L, Kumar R P, Rajendra P, Khush G S. Effect of temperature during grain development on stability of cooking quality components in rice. Jpn J Breed, 1989, 39: 292–306

[17]Zhang H-Y(张海燕), Dong H-T(董海涛), Yao H-G(姚海根), Xiang Y-W(向跃武), Tan X-L(谭学林), Li D-B(李德葆). Isolation of total RNA from rice endosperm and expression of important genes related to grain quality in rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2005, 19(2):105–110 (in Chinese with English abstract)

[18]Rajeevan M S, Ranamukhaarachi D G, Vernon S D, Unger E R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001, 25:443–451

[19]William J H, Kent F M, Susan B A, Anna K, Charlene K T, Kerry M K, Erika L J. Effect of temperature on expression of gene encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci, 2003, 164: 873–881

[20]Zhao H(赵辉), Jing Q(荆奇), Dai T-B(戴廷波), Jiang D(姜东), Cao W(曹卫星). Effects of high temperature during grain filling on key enzymes involved in starch synthesis in two wheat cultivars with different quality types. Acta Agron Sin (作物学报), 2006, 32(3): 423–429 (in Chinese with English abstract)

[21]Jiang H W, Dian W M, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of starch branching enzyme. Phytochemistry, 2003, 63: 53–59

[22]Zhu C-L(朱昌兰), Zhai H-Q(翟虎渠), Wan J-M(万建民). Progresses in the studies of genetic and molecular bases of eating quality in rice. Acta Agric Univ Jiangxiensi (江西农业大学学报), 2002, 24(4): 454–459 (in Chinese with English abstract)

[23]Denyer K, Smith A M. The purification and characterization of the two form s of soluble starch synthase from developing pea embryos.Planta, 1992, 186: 609–627

[24]Marshall J, Sidebottom C, Debet M, Martin C, Smith A M, Edwards A. Identification of the major starch synthase in the soluble fraction of potato tubers. Plant Cell, 1996, 8: l121–l135

[25]Tatsuro H, Takashi O, Yasunori N, Tomio T. Expression profiling of genes related to starch synthesis in rice leaf sheaths during the heading period. Physiol Plant, 2006, 128: 425–435

[26]Commuri P D, Keeling P L. Chain-length specificities of maize starch synthase I enzyme: Studies of glucan affinity and catalytic properties. Planta, 2001, 25: 475–486

[27]Zhong L-J(钟连进), Cheng F-M(程方民), Zhang G-P(张国平), Sun Z-X(孙宗修). Differences in starch chain length distribution and structure characteristics of early-indica rice under different temperature treatments during grain-filling. Sci Agric Sin (中国农业科学), 2005, 38(2): 272–276 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!