欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1801-1808.doi: 10.3724/SP.J.1006.2011.01801

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

籽粒苋C4型磷酸烯醇式丙酮酸羧化酶基因的克隆和表达分析

冯瑞云1,2,白云凤2,**,李平3,张维锋2,*,王媛媛1,杨武德1,*   

  1. 1 山西农业大学农学院,山西太谷 030801;2 山西省农业科学院作物科学研究所,太原 030031;3 山西大学生物工程学院,山西太原 030006
  • 收稿日期:2011-03-23 修回日期:2011-06-25 出版日期:2011-10-12 网络出版日期:2011-07-28
  • 通讯作者: 张维锋, E-mail: zhwfen@sina.com; 杨武德, E-mail: sxauywd@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(30971838), 山西省回国留学人员基金项目(200986)和山西省国际科技合作项目(2011081005)资助。

Molecular Cloning and Expression Analysis of C4 Phosphoenolpyruvate Carboxylase Gene from A. hypochondriacus L.

FENG Rui-Yun1,2,BAI Yun-Feng2,**,LI Ping3,ZHANG Wei-Feng2,*,WANG Yuan-Yuan1,YANG Wu-De1,*   

  1. 1 College of Agronomy, Shanxi Agricultural University, Taigu 030801, China; 2 Institute of Crop Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan 030032, China; 3 Bio-engineering School of Shanxi University, Taiyuan 030006, China
  • Received:2011-03-23 Revised:2011-06-25 Published:2011-10-12 Published online:2011-07-28
  • Contact: 张维锋, E-mail: zhwfen@sina.com; 杨武德, E-mail: sxauywd@126.com

摘要: 磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase, PEPC)是C4途径的关键酶之一。本研究克隆了双子叶植物籽粒苋(A. hypochondriacus L) C4PEPC基因的cDNA和gDNA全长序列。该基因编码区cDNA全长2 895 bp (GenBank Accession: HQ186302),编码964个氨基酸残基。对应的gDNA全长为6 785 bp,含10个外显子和9个内含子,内含子总长3 890 bp,其中第一内含子最长,为1 662 bp,具GATA-motif、G-box等15个光应答元件,9个激素应答元件,29个CAAT box,72个TATA box。该特征在本研究范围内的植物中,为籽粒苋所独有。比较多种植物表明,不同植物之间的C3/C4PEPC基因的外显子长度具有较高的一致性,而内含子的长度变化较大。不同植物PEPC基因对核苷酸具有一定的选择性,并且外显子和内含子的GC含量呈正相关。总的趋势是单子叶植物外显子和内含子的GC含量均高于双子叶植物。利用半定量RT-PCR分析表达模式,发现籽粒苋PEPC基因主要在叶片中表达,表达量随光照时间延长而增加。

关键词: 籽粒苋(A. hypochondriacus L), C4光合途径, 磷酸烯醇式丙酮酸羧化酶, 基因组序列, 叶片特异性, 光诱导表达

Abstract: Phosphoenolpyruvate carboxylase (PEPC) plays a crucial role in primarily fixing atmospheric CO2 in C4 and CAM plants. This paper aimed at cloning both cDNA and genomic DNA of PEPC gene from Amarnthus hypochondriacus in order to provide candidate genes for C4 genetic engineering. The cDNA was cloned by RT-PCR, and the corresponding gDNA was cloned by LA-PCR. The sequence characteristics were analyzed using bioinformatics softwares including Blast, ClustalX (1.8), DNAMAN, PlantCARE. The gene expression pattern was analyzed by using semi-quantitative RT-PCR. The results indicated that the cDNA with the complete coding region was 2 895 bp in length which encoded 964 putative amino acids. The amino acid at site 774 was the serine that is an invariant residue in all C4 phosphoenolpyruvate carboxylases regardless of their taxonomic. The corresponding gDNA was 6 785 bp in length which harbored ten exoned and nine introns. The longest intron was the first intron with 1 662 bp in length. A computer scan disclosed that the first intron harbored 15 light-induced elements, nine hormone-induced elements, 29 TAAT motifs and 72 TATA motifs.In comparisons of PEPC genes between different species the exons are usually conserved but the introns have often diverged in both nucleotide sequences and lengths. The GC ratios of exons are positively correlated with those of introns in PEPC genes from different species. And the GC ratios of PEPC gene in dicotyledon A. hypochondriacus, potato, A. thaliana and ice plant are lower than those in monocotyledon maize, rice and wheat. The semi-quantitative RT-PCR analysis revealed that the cloned PEPC gene was light-inducible leaf-specifically expressed and classified as C4-type sub-family groups.

Key words: Amarnthus hypochondriacus, C4 photosynthetic type, PEPC, gDNA, Leaf-specific, Light-inducible expression

[1]Caemmerer S, Furbank R T. The C4 pathway: an efficient CO2 pump. Photosynthesis Res, 2003, 77: 191–207
[2]Schaeffer A R, Sheen J. Maize C4 photosynthesis involves differential regulation of phosphoenolpyruvate carboxylase gene. Plant J, 1992, 2: 221–232
[3]Engelmann S, Blaesing O E, Svensson P, Westhoff P. Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria: a gradual increase from C3 to C4 characteristics. Planta, 2003, 217: 717–725
[4]Blaesing O E, Ernst K, Streubel M, Westhoff P, Svensson P. The non-photosynthetic phosphoenolpyruvate carboxylases of the C4 dicot Flaveria trinervia-implications for the evolution of C4 photosynthesisl. Planta, 2000, 215: 448–456
[5]Izui K, Matsumura H, Furumoto T, Kai Y. Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol, 2004, 55: 69–84
[6]Ogren W L, Photorespiration: pathways, regulation and modification. Annu Rev Plant Physiol, 1984, 35: 415–442
[7]Haesler R E, Hirsch H J, Kreuzaler F, Peter haensel C. Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. J Exp Bot, 2002, 53: 591–607
[8]Zhou B-Y(周宝元), Ding Z-S(丁在松), Zhao M(赵明). Alleviation of drought stress inhibition on photosynthesis by over expression of PEPC gene in rice. Acta Agron Sin (作物学报), 2011, 37(1): 112–118 (in Chinese with English abstract)
[9]Zhang F, Chi W, Wang Q, Zhang Q D, Wu N F. Molecular cloning of C4-specific Ppc gene of sorghum and its high level expression in transgenic rice. Chin Sci Bull, 2003, 48: 1835–1840
[10]Yang R-Z(杨荣仲), Tan Y-M(谭裕模), Zhang M-Q(张木清), Chen R-K(陈如凯), Li Y-R(李杨瑞). Primary study of genetic transformation of tobacco with sugarcane C4 phosphoenolpyruvate carboxylase gene. Chin J Trop Crops (热带作物学报), 2004, 25(2): 61–65 (in Chinese with English abstract)
[11]Shukla S, Bhargava A,Chatterjee A, Srivastava A, Singh S P. Genotypic variability in vegetable amaranth (Amaranthus tricolor L.) for foliage yield and its contributing traits over successive cuttings and years. Euphytica, 2006, 151: 103–110
[12]Bai Y-F(白云凤), Guo Z-H(郭志华), Bai D-M(白冬梅), Wang X-Q(王小琦), Zhang W-F(张维锋). An improved method for extration and identification of potato RNAs. Acta Hortic Sin (园艺学报), 2007, 34(4): 1059–1062 (in Chinese with English abstract)
[13]Engelmann S, Blaesing O E, Westhoff P, Svensson P. Serine 774 and animo acids 296 to 437 comprise the major C4 determinants of the C4 phosphoenolpyruvate carboxylase of Flaveria trinervia. FEBS Lett, 2002, 524: 11–14
[14]Blaesing O E, Westhoff P, Svensson P. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine resudue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. J Biol Chem, 2000, 275: 27917–27923
[15]Levisky V G. RECON: a program for prediction of nucleosome formation potential. Nucl Acids Res, 2004, 32: 346–349
[16]Chen X Q, Zhang X D, Liang R Q, Zhang L Q, Yang F P, Cao M Q. Expression of the intact C4 type PEPC gene cloned from maize in transgenic winter wheat. Chin Sci Bull, 2004, 49: 2137–2143
[17]Xiang X-C(向珣朝), He L-B(何立斌), Sun J-M(孙建明), Li J-H(李季航), Yao Y-P(姚嫣萍), Li P(李平). Effect of maize PEPC gene in different genetic backgrounds of CMS maintainers and tolerance to photooxidation in the PEPC transgenic line. Chin J Rice Sci (中国水稻科学), 2009, 23(3): 257–262 (in Chinese with English abstract)
[18]Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol, 1999, 17: 76–81
[19]Hudaspeth R L, Grula J W, Dai Z Y, Edwards G E, Ku M S B. Expression on maize phosphoenolpyruvate carboxylase in transgenic tobacco. Plant Physiol, 1982, 98: 458–464
[20]Kawabe A, Miyashita N T. Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Systems, 2003, 78: 343–352
[21]Li Ping(李平), Bai Y-F(白云凤), Feng R-Y(冯瑞云), Wang Y-Y(王原媛), Zhang W-F(张维锋). Analhysis of codon bias of NAD-ME gene in Amaranthus hypochondriacus. Chin J Appl Environ Biol (应用和环境生物学报), 2011, 17(1): 12–17 (in Chinese with English abstract)
[22]Furger A, O’Sullivan J M, Binnie A, Lee B A, Proudfoot N J. Promoter proximal splice sites enhance transcription. Gene Dev, 2002, 16: 2792–2799
[23]Jia Q, Wu H T, Zhou X J, Gao J, Zhao W, Ar Q S, Wei J S, Hou L H, Wu S Y, Zhang Y. A “GC-rich” method for mammalian gene expression: a dominant role of non-coding DNA GC content in regulation of mammalian gene expression. Sci China: Life Sci, 2010, 53: 94–100
[24]Wang Y B, Lang Z H, Zhang J, He K L, Song F P, Huang D F. Ubi1 intron-mediated enhancement of the Bt cry1AH gene in transgenic maize (Zea mays L.). Chin Sci Bull, 2008, 53(20): 3185–3190
[25]Jeong Y M, Mun J H, Kim H. An upstream region in the first intron of petunia action depolymerizing factor 1 affects tissue-   specific expression in transgenic Arabidopsis. Plant J, 2007, 50:
[1] 宋凝曦, 李霞, 王净, 吴博晗, 曹悦, 杨杰, 谢寅峰. 大环内酯类和高表达玉米C4-PEPC基因对水稻耐旱性的影响[J]. 作物学报, 2021, 47(10): 1927-1940.
[2] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[3] 张金飞,李霞,何亚飞,谢寅峰. 外源葡萄糖增强高表达转玉米C4pepc水稻耐旱性的生理机制[J]. 作物学报, 2018, 44(01): 82-94.
[4] 赵志刚,富贵,邓昌蓉,杜德志. 人工合成甘蓝型油菜早期世代基因组变异的AFLP和MSAP标记研究[J]. 作物学报, 2013, 39(07): 1231-1239.
[5] 习雨琳,周朋,宋梅芳,李志勇,孟凡华,杨建平. 拟南芥RBCS-1A基因受光调节表达模式及其启动子遗传转化应用评价[J]. 作物学报, 2012, 38(09): 1561-1569.
[6] 李锁平,张大乐,王秀娥,亓增军,刘大钧. 节节麦和黑麦杂种F1及双二倍体中基因组变异分析[J]. 作物学报, 2012, 38(06): 996-1002.
[7] 丁在松, 周宝元, 孙雪芳, 赵明. 干旱胁迫下PEPC过表达增强水稻的耐强光能力[J]. 作物学报, 2012, 38(02): 285-292.
[8] 吴琼, 许为钢, 李艳, 齐学礼, 胡琳, 张磊, 韩琳琳. 田间条件下转玉米C4型PEPC基因小麦的光合生理特性[J]. 作物学报, 2011, 37(11): 2046-2052.
[9] 周宝元, 丁在松, 赵明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用[J]. 作物学报, 2011, 37(01): 112-118.
[10] 束永俊,李勇,吴娜拉胡,柏锡,才华,纪巍,朱延明. 大豆EST-SNP的挖掘鉴定及其CAPS标记的开发[J]. 作物学报, 2010, 36(4): 574-579.
[11] 方立锋;丁在松;赵明. 转ppc基因水稻苗期抗旱特性研究[J]. 作物学报, 2008, 34(07): 1220-1226.
[12] 丁在松;赵明;荆玉祥;李良璧;匡廷云. 玉米ppc基因过表达对转基因水稻光合速率的影响[J]. 作物学报, 2007, 33(05): 717-722.
[13] 张彬;丁在松;张桂芳;石云鹭;王金明;方立锋;郭志江;赵明. 根癌农杆菌介导获得稗草Ecppc转基因小麦的研究[J]. 作物学报, 2007, 33(03): 356-362.
[14] 张桂芳;赵明;丁在松;张丽;肖俊涛. 稗草磷酸烯醇式丙酮酸羧化酶(PEPCase)基因的克隆与分析[J]. 作物学报, 2005, 31(10): 1365-1369.
[15] 杨甲定. 引种到青藏高原大田的玉米叶片中磷酸烯醇式丙酮酸羧化酶活性的日变化[J]. 作物学报, 2003, 29(03): 349-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!