作物学报 ›› 2011, Vol. 37 ›› Issue (01): 112-118.doi: 10.3724/SP.J.1006.2011.00112
周宝元,丁在松,赵明*
ZHOU Bao-Yuan,DING Zai-Song,ZHAO Ming*
摘要: 为了明确磷酸烯醇式丙酮酸羧化酶(PEPC)过量表达能否提高水稻的光合速率,测定了42个表达不同PEPC水平的转玉米PEPC基因水稻株系及对照(受体亲本中花8号)开花期和灌浆期的光合速率。结果表明,在水田条件下,转基因株系光合速率与未转基因对照相比没有明显差异;而在旱地条件下,转基因水稻的光合速率显著高于对照(27%和24%)。随机选取2个PEPC相对活性分别为10倍和25倍的转基因株系进行网室精确控水盆栽实验得到相似的结果。说明单纯导入PEPC并不能提高水稻的光合速率,而干旱胁迫下转基因水稻的光合优势可能是由于PEPC参与水稻的抗旱反应而减轻了干旱胁迫对光合作用的抑制作用。
[1]Häusler R E, Hirsch H J, Kreuzaler F, Peterhänsel C. Over-expression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. J Exp Bot, 2002, 53: 591-607 [2]Lee good R. C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. J Exp Bot, 2002, 53: 581-591 [3]Matsuoka M, Furbank R T, Fukayama H, Miyao M. Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 297-314 [4]Mann C C. Crop scientists seek a new revolution. Science, 1999, 283: 310-314 [5]Mann C C. Genetic engineers aim to soup up crop photosynthesis. Science, 1999, 283: 314-316 [6]Ku M S B, Agarie S, Nomurn M, Fukayama H, Tsuchida H, Ono K,Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotech, 1999, 17: 76-80 [7]Sheehy J E, Mitchell P L, Hardy B. Redesign rice Photosynthesis to Increase Yield. Amsterdam: Elsvier Science Publishers, 2000. pp 167-204 [8]Agarie S, Miura A, Sumikura R, Tsukamoto S, Nose A, Arima S, Matsuoka M, Miyao-Tokutomi M. Over expression of C4 PEPC caused O2-insensitive photosynthesis in transgenic rice plant. Plant Sci, 2002, 162: 257-265 [9]Fukayama H, Hatch M D, Tamai T, Tsuchida H, Sudoh S, Furbank R T, Miyao M. Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth Res, 2003, 77: 227-239 [10]Ding Z-S(丁在松), Zhao M(赵明), Jing Y-X(荆玉祥), Li L-B(李良璧), Kuang T-Y(匡廷云). Effect of over expression of maize ppc gene on photosynthesis in transgenic rice plants. Acta Agron Sin (作物学报), 2007, 33(5): 717-722 (in Chinese with English abstract) [11]Miyao M. Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J Exp Bot, 2003, 54: 179-189 [12]Ku M S B, Cho D, Ranade U, Hsu T P, Li X, Jiao D M, Ehleringer J, Miyao M, Matsuoka M. Photosynthetic performance of transgenic rice plants over expressing maize C4 photosynthesis enzymes. In: Sheehy J E, Mitchell P L, Hardy B, eds. Redesigning of Rice Photosynthesis to Increase Yield. Amsterdam: Elsevier Science Publishers, 2000. pp 193-204 [13]Jiao D M, Huang X Q, Li X, Chi W, Kuang T Y, Zhang Q D, Ku M S B, Cho D H. Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes. Photosynth Res, 2002, 72: 85-93 [14]Jiao D M, Li X, Ji B H. Photoprotective effects of high level expression of C4 phosphoenolpyruvate carboxylase in transgenic rice during photo inhibition. Photosynthetica, 2005, 43: 501-508 [15]Jiao D-M(焦德茂), Li X(李霞), Huang X-Q(黄雪清), Chi W(迟伟), Kuang T-Y(匡廷云), Ku M S B(古森本). Characteristics of photosynthetic CO2 assimilation and chlorophyll fluorescence in transgenic rice plants with PEPC gene. Chin Sci Bull (科学通报), 2001, 46(5): 414-418 (in Chinese with English abstract) [16]Bandyopadhyay, Datta K, Zhang J, Yang W, Raychaudhuri S, Datta S K. Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Sci, 2007, 172: 1204-1209 [17]Gonzalez M C, Sanchez R, Cejudo F J. Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta, 2003, 216: 985-992 [18]Sanchez R, Flores A, Cejudo F J. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta, 2006, 223: 901-909 [19]Echevarría C, Garciá-Maurino S, Alvarez R, Soler A, Vidal J. Salt stress increases the Ca2+-independent phosphoenolpyruvate carboxylase kinase activity in Sorghum leaves. Planta, 2001, 214: 283-287 [20]Garciá-Maurino S, Monreal J A, Alvarez R, Vidal J, Echevarría C. Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence of osmotic stress, involvement of iontoxicity and significance of dark phosphorylation. Planta, 2003, 216: 648-655 [21]Barlow E W K. The Growth and Functioning of Leaves. London: Cambridge University Press, 1988. pp 314-345 [22]Legg B J, Day W, Lawtor D W, Parkinson K J. The effect of drought on barley growth: Models and measurements showing relative importance of leaf area and photosynthetic rate. J Agric Sci, 1979, 92: 703-7161 [23]Yamance K, Hayakawa K, Kawasaki M. Bundle sheath chloroplasts of rice are more sensitive to drought stress than mesophyll chloroplasts. J Plant Physiol, 2003, 160: 1319-1327 [24]Jiang M-Y(蒋明义), Yang W-Y(杨文英), Xu J(徐江), Chen Q-Y(陈巧云). Osmotic stress-induced oxidative injury of riceseedlings. Acta Agron Sin (作物学报), 1994, 20(6): 733-738 (in Chinese with English abstract) [25]Dhindsa R S. Protein synthesis during rehydration of rapidly dried Tortula ruralis: evidence for oxidation injury. Plant Physiol, 1987, 85: 1094-1098 [26]Kavi Kishore P B, Sangam S, Amrutha R N, Laxmi P S, Naidu K R, Rao K R S S, Rao S, Reddy K J, Theriappan P, Sreenivasulu N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr Sci, 2005, 88: 424-438 [27]Liang J-S(梁建生), Zhang J-H(张建华). Production, transport and physiological functions of stress signal abscisic acid in roots. Plant Physiol Commun (植物生理学通讯), 1998, 34(5): 329-338 (in Chinese with English abstract) [28]Grabov A, Blatt M R. Co-ordination of signaling elements in guard cell ion channel control. J Exp Bot, 1998, 49: 351-360 [29]Fang L-F(方立锋), Ding Z-S(丁在松), Zhao M(赵明). Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin (作物学报), 2008, 34(7): 1220-1226 (in Chinese with English abstract) [30]Kung S D, Chollet R, Marsho T V. Crystallization and assay procedures of tobacco ribulose 1,5-bisphosphate carboxylase oxygenase. In: Pietro A S ed. Method Enzymology. New York: Academic Press Inc, 1980, 69: 326-335 [31]Gonzalez D H, Iglesias A A, Andreo C S. On the regulation of phosphoenolpyruvate carboxylase activity from maize leaves by L-malate: effect of pH. J Plant Physiol, 1984, 116: 425-430 [32]Frauke C, Peter S, Jurgen F. Malate metabolism and reactions of oxidoreduction in cold-hardened winter rye (Secale cereale L.) leaves. J Exp Bot, 2003, 384: 1075-1083 [33]Backhausen J E, Kitzmann C, Scheibe R. Competition between electron acceptors in photosynthesis: regulation of the malate valve during CO2 fixation and nitrite reduction. Photosynth Res, 1994, 42: 75-86 [34]Kogami H, Shono M, Koike T, Yanagisawa S, Izui K, Sentoku N, Tanifuji S, Uchimiya H, Toki S. Molecular and physiological evaluation of transgenic tobacco plants expression a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. Transgenic Res, 1994, 3: 287-296 [35]Li X(李霞), Jiao D-M(焦德茂), Dai C-C(戴传超). The response to photo oxidation in leaves of PEPC transgenic rice plant (Oryza sativa L.). Acta Agron Sin (作物学报), 2005, 31(4): 408-413 (in Chinese with English abstract) [36]Andreo C S, Gonzalez D H, Iglesias A A. Higher plant phosphoenolpyruvate carboxylase: Structure and regulation. FEBS Lett, 1987, 13: 1-8 [37]Jiao D-M(焦德茂), Kuang T-Y(匡廷云), Li X(李霞), Ge Q-Y(戈巧英), Huang X-Q(黄雪清), Hao N-B(郝乃斌), Bai K-Z(白克智). A limited photosynthetic CO2 concentration mechanism in transgenic rice plant over expressed maize PEPC gene. Sci China (Ser C) (中国科学·C辑), 2003, 33(1): 33-39 (in Chinese with English abstract) |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[3] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[4] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[5] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[6] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[7] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[8] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
[9] | 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805. |
[10] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[11] | 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258. |
[12] | 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响[J]. 作物学报, 2021, 47(7): 1324-1331. |
[13] | 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099. |
[14] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[15] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786. |
|