欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (01): 112-118.doi: 10.3724/SP.J.1006.2011.00112

• 耕作栽培·生理生化 • 上一篇    下一篇

PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用

周宝元,丁在松,赵明*   

  1. 中国农业科学院作物科学研究所 / 农业部作物生理生态与栽培重点开放实验室,北京 100081
  • 收稿日期:2010-04-01 修回日期:2010-04-01 出版日期:2011-01-12 网络出版日期:2010-11-16
  • 基金资助:

    本文由国家重点基础研究发展计划(973计划)项目(2009CB118605)和国家“十一五”科技支撑计划“粮食丰产科技工程”项目(2006BAD02A13)资助。

Alleviation of Drought Stress Inhibition on Photosynthesis by Over Expression of PEPC Gene in Rice

ZHOU Bao-Yuan,DING Zai-Song,ZHAO Ming*   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Ecophysiology and Cultivition, Ministry of Agriculture, Beijing 100081, China
  • Received:2010-04-01 Revised:2010-04-01 Published:2011-01-12 Published online:2010-11-16

摘要: 为了明确磷酸烯醇式丙酮酸羧化酶(PEPC)过量表达能否提高水稻的光合速率,测定了42个表达不同PEPC水平的转玉米PEPC基因水稻株系及对照(受体亲本中花8号)开花期和灌浆期的光合速率。结果表明,在水田条件下,转基因株系光合速率与未转基因对照相比没有明显差异;而在旱地条件下,转基因水稻的光合速率显著高于对照(27%和24%)。随机选取2个PEPC相对活性分别为10倍和25倍的转基因株系进行网室精确控水盆栽实验得到相似的结果。说明单纯导入PEPC并不能提高水稻的光合速率,而干旱胁迫下转基因水稻的光合优势可能是由于PEPC参与水稻的抗旱反应而减轻了干旱胁迫对光合作用的抑制作用。

关键词: 干旱, 转基因水稻, 磷酸烯醇式丙酮酸羧化酶(PEPC), 光合速率

Abstract: Introducingenzymes involved in photosynthesis of C4 plants into rice is supposed to enhance the photosynthesis and crop productivity. However, only a few researches showed that the photosynthesis and crop productivity has been improved by introducing phosphoenolpyruvate carboxylase (PEPC) gene into rice. In the present research, the photosynthesis in 42 lines of PEPC gene overexpressed rice was investigated. The average photosynthetic rate (Pn) of transgenic rice lines was almost the same as that of the wild type (control) in paddy field, while much higher in upland field. Only a few transgenic lines showed higher Pn in paddy field and most of them showed higher Pn in upland field. Similar results were found in the water controlled experiment. Two transgenic rice lines with different relative activities of PEPC (10 and 25 fold) were selected to study their photosynthesis under different water potentials (0, -20, and -40 kPa). In both lines, Pn was similar with that in the wild type under normal condition (0 kPa) and much higher under drought conditions (-20 and -40 kPa). In both experiments, the transgenic lines had higher Pn under drought conditions, with a much slower decreasing rate than the wild type. Therefore, the present results suggested that the overexpressed PEPC could not improve the photosynthetic rate of transgenic rice plants. But the photosynthetic rate of transgenic rices declined slowly under drought condition. So it is supposed that PEPC might be involved in drought resistance to decrease the inhibition of drought stress on photosynthesis in rice.

Key words: Drought, Transgenic rice, Phosphoenolpyruvate carboxylase (PEPC), Photosynthetic rate

[1]Häusler R E, Hirsch H J, Kreuzaler F, Peterhänsel C. Over-expression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. J Exp Bot, 2002, 53: 591-607
[2]Lee good R. C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. J Exp Bot, 2002, 53: 581-591
[3]Matsuoka M, Furbank R T, Fukayama H, Miyao M. Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 297-314
[4]Mann C C. Crop scientists seek a new revolution. Science, 1999, 283: 310-314
[5]Mann C C. Genetic engineers aim to soup up crop photosynthesis. Science, 1999, 283: 314-316
[6]Ku M S B, Agarie S, Nomurn M, Fukayama H, Tsuchida H, Ono K,Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotech, 1999, 17: 76-80
[7]Sheehy J E, Mitchell P L, Hardy B. Redesign rice Photosynthesis to Increase Yield. Amsterdam: Elsvier Science Publishers, 2000. pp 167-204
[8]Agarie S, Miura A, Sumikura R, Tsukamoto S, Nose A, Arima S, Matsuoka M, Miyao-Tokutomi M. Over expression of C4 PEPC caused O2-insensitive photosynthesis in transgenic rice plant. Plant Sci, 2002, 162: 257-265
[9]Fukayama H, Hatch M D, Tamai T, Tsuchida H, Sudoh S, Furbank R T, Miyao M. Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth Res, 2003, 77: 227-239
[10]Ding Z-S(丁在松), Zhao M(赵明), Jing Y-X(荆玉祥), Li L-B(李良璧), Kuang T-Y(匡廷云). Effect of over expression of maize ppc gene on photosynthesis in transgenic rice plants. Acta Agron Sin (作物学报), 2007, 33(5): 717-722 (in Chinese with English abstract)
[11]Miyao M. Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J Exp Bot, 2003, 54: 179-189
[12]Ku M S B, Cho D, Ranade U, Hsu T P, Li X, Jiao D M, Ehleringer J, Miyao M, Matsuoka M. Photosynthetic performance of transgenic rice plants over expressing maize C4 photosynthesis enzymes. In: Sheehy J E, Mitchell P L, Hardy B, eds. Redesigning of Rice Photosynthesis to Increase Yield. Amsterdam: Elsevier Science Publishers, 2000. pp 193-204
[13]Jiao D M, Huang X Q, Li X, Chi W, Kuang T Y, Zhang Q D, Ku M S B, Cho D H. Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes. Photosynth Res, 2002, 72: 85-93
[14]Jiao D M, Li X, Ji B H. Photoprotective effects of high level expression of C4 phosphoenolpyruvate carboxylase in transgenic rice during photo inhibition. Photosynthetica, 2005, 43: 501-508
[15]Jiao D-M(焦德茂), Li X(李霞), Huang X-Q(黄雪清), Chi W(迟伟), Kuang T-Y(匡廷云), Ku M S B(古森本). Characteristics of photosynthetic CO2 assimilation and chlorophyll fluorescence in transgenic rice plants with PEPC gene. Chin Sci Bull (科学通报), 2001, 46(5): 414-418 (in Chinese with English abstract)
[16]Bandyopadhyay, Datta K, Zhang J, Yang W, Raychaudhuri S, Datta S K. Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Sci, 2007, 172: 1204-1209
[17]Gonzalez M C, Sanchez R, Cejudo F J. Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta, 2003, 216: 985-992
[18]Sanchez R, Flores A, Cejudo F J. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta, 2006, 223: 901-909
[19]Echevarría C, Garciá-Maurino S, Alvarez R, Soler A, Vidal J. Salt stress increases the Ca2+-independent phosphoenolpyruvate carboxylase kinase activity in Sorghum leaves. Planta, 2001, 214: 283-287
[20]Garciá-Maurino S, Monreal J A, Alvarez R, Vidal J, Echevarría C. Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence of osmotic stress, involvement of iontoxicity and significance of dark phosphorylation. Planta, 2003, 216: 648-655
[21]Barlow E W K. The Growth and Functioning of Leaves. London: Cambridge University Press, 1988. pp 314-345
[22]Legg B J, Day W, Lawtor D W, Parkinson K J. The effect of drought on barley growth: Models and measurements showing relative importance of leaf area and photosynthetic rate. J Agric Sci, 1979, 92: 703-7161
[23]Yamance K, Hayakawa K, Kawasaki M. Bundle sheath chloroplasts of rice are more sensitive to drought stress than mesophyll chloroplasts. J Plant Physiol, 2003, 160: 1319-1327
[24]Jiang M-Y(蒋明义), Yang W-Y(杨文英), Xu J(徐江), Chen Q-Y(陈巧云). Osmotic stress-induced oxidative injury of riceseedlings. Acta Agron Sin (作物学报), 1994, 20(6): 733-738 (in Chinese with English abstract)
[25]Dhindsa R S. Protein synthesis during rehydration of rapidly dried Tortula ruralis: evidence for oxidation injury. Plant Physiol, 1987, 85: 1094-1098
[26]Kavi Kishore P B, Sangam S, Amrutha R N, Laxmi P S, Naidu K R, Rao K R S S, Rao S, Reddy K J, Theriappan P, Sreenivasulu N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr Sci, 2005, 88: 424-438
[27]Liang J-S(梁建生), Zhang J-H(张建华). Production, transport and physiological functions of stress signal abscisic acid in roots. Plant Physiol Commun (植物生理学通讯), 1998, 34(5): 329-338 (in Chinese with English abstract)
[28]Grabov A, Blatt M R. Co-ordination of signaling elements in guard cell ion channel control. J Exp Bot, 1998, 49: 351-360
[29]Fang L-F(方立锋), Ding Z-S(丁在松), Zhao M(赵明). Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin (作物学报), 2008, 34(7): 1220-1226 (in Chinese with English abstract)
[30]Kung S D, Chollet R, Marsho T V. Crystallization and assay procedures of tobacco ribulose 1,5-bisphosphate carboxylase oxygenase. In: Pietro A S ed. Method Enzymology. New York: Academic Press Inc, 1980, 69: 326-335
[31]Gonzalez D H, Iglesias A A, Andreo C S. On the regulation of phosphoenolpyruvate carboxylase activity from maize leaves by L-malate: effect of pH. J Plant Physiol, 1984, 116: 425-430
[32]Frauke C, Peter S, Jurgen F. Malate metabolism and reactions of oxidoreduction in cold-hardened winter rye (Secale cereale L.) leaves. J Exp Bot, 2003, 384: 1075-1083
[33]Backhausen J E, Kitzmann C, Scheibe R. Competition between electron acceptors in photosynthesis: regulation of the malate valve during CO2 fixation and nitrite reduction. Photosynth Res, 1994, 42: 75-86
[34]Kogami H, Shono M, Koike T, Yanagisawa S, Izui K, Sentoku N, Tanifuji S, Uchimiya H, Toki S. Molecular and physiological evaluation of transgenic tobacco plants expression a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. Transgenic Res, 1994, 3: 287-296
[35]Li X(李霞), Jiao D-M(焦德茂), Dai C-C(戴传超). The response to photo oxidation in leaves of PEPC transgenic rice plant (Oryza sativa L.). Acta Agron Sin (作物学报), 2005, 31(4): 408-413 (in Chinese with English abstract)
[36]Andreo C S, Gonzalez D H, Iglesias A A. Higher plant phosphoenolpyruvate carboxylase: Structure and regulation. FEBS Lett, 1987, 13: 1-8
[37]Jiao D-M(焦德茂), Kuang T-Y(匡廷云), Li X(李霞), Ge Q-Y(戈巧英), Huang X-Q(黄雪清), Hao N-B(郝乃斌), Bai K-Z(白克智). A limited photosynthetic CO2 concentration mechanism in transgenic rice plant over expressed maize PEPC gene. Sci China (Ser C) (中国科学·C辑), 2003, 33(1): 33-39 (in Chinese with English abstract)
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[3] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[4] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[5] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[6] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[7] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[8] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[9] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[10] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[11] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[12] 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响[J]. 作物学报, 2021, 47(7): 1324-1331.
[13] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099.
[14] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[15] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!