作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1561-1569.doi: 10.3724/SP.J.1006.2012.01561
习雨琳1,2,周朋1,宋梅芳1,李志勇1,3,孟凡华1,杨建平1,4,*
XI Yu-Lin1,2,ZHOU Peng1,SONG Mei-Fang1,LI Zhi-Yong1,3,MENG Fan-Hua1,YANG Jian-Ping1,4,*
摘要: RBCS编码光合碳同化关键酶核酮糖1,5-二磷酸羧化酶/加氧酶的小亚基, 是控制植物光合作用的重要基因之一。本研究利用实时荧光定量PCR技术分析拟南芥RBCS-1A受光调节表达模式, 结果表明, AtRBCS-1A表达受光诱导, 同时具有组织表达特异性; 运用生物信息学手段分析发现, 该基因启动子序列中存在多个参与光应答的顺式作用元件; 采用PCR技术从拟南芥基因组中分离到长度为1 691 bp的AtRBCS-1A启动子片段, 将该片段与GUS报告基因融合构建植物表达载体并转化野生型拟南芥, 对获得的转基因植株进行GUS染色, 结果显示, AtRBCS-1A启动子是光诱导型和组织特异型启动子。以上结果初步证明, AtRBCS-1A启动子应用于植物遗传转化切实可行, 具有重要应用价值。
[1]Nie L-N(聂丽娜), Xia L-Q(夏兰琴), Xu Z-S(徐兆师), Gao D-Y(高东尧), Li L(李琳), Yu Z(于卓), Chen M(陈明), Li L-C(李连城), Ma Y-Z(马有志). Progress on cloning and functional study of plant gene promoters. J Plant Genet Resour (植物遗传资源学报), 2008, 9(3): 385-391 (in Chinese with English abstract)[2]Cheng X, Sardana R, Kaplan H, Altosaar I. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci, 1998, 95: 2767-2772[3]Alam M F, Data K, Abrigo E, Oliva N, Tu J, Virmani S S, Datta S K. Transgenic insect resistant maintainer line (IR68899B) for improvement of hybrid rice. Plant Cell Rep, 1999, 18: 572-575[4]Chen H, Tang W, Xu C G, Li X H, Lin Y J, Zhang Q F. Transgenic indica rice plants harboring a synthetic cry2A gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor Appl Genet, 2005, 111: 1330-1337[5]Tang W, Chen H, Xu C G., Li X H, Lin Y J, Zhang Q F. Development of insect-resistant transgenic indica rice with a synthetic cry1C gene. Mol Breed, 2006, 18: 1-10[6]Wu C, Fan Y, Zhang C, Oliva N, Datta S K. Transgenic fertile japonica rice plants expressing a modified cry1A(b) gene resistant to yellow stem borer. Plant Cell Rep, 1997, 17: 129-132[7]Tu J M, Zhang G A, Data K, Xu C G, He Y Q, Zhang Q F. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat Biotechnol, 2004, 18: 1101-1104[8]Lessard P A, Kulaveerasingam H, York G M., Strong A, Sinskey A J. Manipulation gene expression for the metabolic engineering of plants. Metab Eng, 2002, 4: 67-79[9]Qu D, Song Y, Li W M, Pei X W, Wang Z X, Jia S R, Zhang Y Q. Isolation and characterization of the organ-specific and light-inducible promoter of the gene encoding rubisco activase in potato (Solanum tuberosum). Genet Mol Res, 2001, 10: 621-631[10]Gu R-L, Zhao L, Zhang Y, Chen X P, Bao J, Zhao J F, Wang Z Y, Fu J J, Liu T S, Wang J H, Wang G Y. Isolation of a maize beta-glucosidase gene promoter and characterization of its activity in transgenic tobacco. Plant Cell Rep, 2006, 25: 1157-1165[11]Potenza C, Aleman L, Champa S G. Invited review: targeting transgene expression in research, agriculture, and environmental application: promoters used in plant transformation. In Vitro Cell Dev Biol-Plant, 2004, 40: 1-22[12]Matzke M A, Matzke A J M, How and why do plant inactivate homologuous (trans)genes? Plant Physiol, 1995, 107: 679-685[13]Kuiper H A, Kleter G A, Noteborn H P, Kok E J. Assessment of the food safety issues related to genetically modified foods. Plant J, 2001, 27: 503-528[14]Shelton A M, Zhao J Z, Roush R T. Economic, ecological, food safety, and social consequences of the development of Bt transgenic plants. Annu Rev Entomol, 2002, 47: 845-881[15]Conner A J, Glare T R, Nap J P. The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J, 2003, 33: 19-46[16]Terzaghi W B, Cashmore A R. Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 445-474[17]Kuhlemeier C, Green P J, Chua N H. Regulation of gene expression in higher plants. Annu Rev Plant Physiol, 1987, 38: 221-57[18]Sasaki Y, Sakihama T, Kamikubo T, Shinozaki K. Phytochrome-mediated regulation of two mRNAs, encoded by nuclei and chloroplasts of ribulose-1,5-bisphosphate carboxylase/oxygenase. Eur J Biochem, 1983, 133: 617-620[19]Tobin E M. Phytochrome-mediated regulation of messenger RNAs for the small subunit of ribulase-1,5-bisphosphate carboxylase and the light-harvesting chlorophyll a/b-protein in Lemna gibba. Plant Mol Biol, 1981, 1: 35-51[20]Dean C, Pichersky E, Dunsmuir P. Structure, evolution, and regulation of RbcS genes in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 415-439[21]Schneider G, Lindqvist Y, Branden C I. RUBISCO: structure and mechanism. Annu Rev Biophys Biomol Struct, 1992, 21: 119-143[22]Spreizer R J. Genetic dissection of rubisco structure and function. Annu Rev Plant Physiol. Plant Mol Boil, 1993, 44: 411-434[23]Hartman F C, Harpel M R. Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate caboxylase/oxygenase. Annu Rev Biochem, 1994, 63: 197-234[24]Patel M, Berry J O. Rubisco gene expression in C4 plants. J Exp Bot, 2008, 59: 1625-1634[25]Silverthorne J, Tobin E M. Post-transcriptional regulation of organ-specific expression of individual rbcS mRNAs in Lemna gibba. Plant Cell, 1990, 2: 1181-1190[26]Gilmartin P M, Chua N H. Spacing between GT-1 binding sites within a light-responsive element is critical for transcriptional activity. Plant Cell, 1990, 2: 447-455[27]Donald R G, Cashmore A R. Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J, 1990, 9: 1717-1726[28]Green P J, Chua N H. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J, 1987, 6: 2543-2549[29]Kuhlemeier C, Cuozzo M, Green P J, Goyvaerts E, Ward K, Chua N H. Localization and conditional redundancy of regulatory elements in rbcS-3A, a pea gene encoding the small subunit of ribulose bisphosphate carboxylase. Proc Natl Acad Sci USA, 1988, 85: 4662-4666[30]Manzara T, Carrasco P, Gruissem W. Developmental and organ-specific changes in promoter DNA-protein interactions in tomato rbcS gene family. Plant Cell, 1991, 3: 1305-1316[31]Rajeevan M S, Ranamukhaarachi D G, Vernon S D, Unger E R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001, 25: 443-451[32]Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database. Nucl Acids Res, 1999, 27: 297-300[33]Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer Y V, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 2002, 30: 325-327[34]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissue. Plant Mol Biol, 1985, 5: 69-76[35]Shen W J, Forde B G. Efficient transformation of Agrobacterium spp. by high voltage eletroporation. Nucl Acids Res, 1989, 17: 8385[36]Mersereau M, Pazour G J, Das A. Efficient transformation of Agrobacterium tumefaciens by eletroporation. Gene, 1990, 90: 149-151[37]Clough S J, Bent A F. Floral dip: a simplified method or Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743[38]Jefferson R A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep, 1987, 5: 387-405[39]Masuda T, Fusada N, Oosawa N, Takamatsu K, Yamamoto Y Y, Ohto M, Nakamura K, Goto K, Shibata D, Shirano Y, Hayashi H, Kato Y, Tabata S, Shimada H, Ohta H, Takamiya K. Functional analysis of isoforms of NADPH protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. Plant Cell Physiol, 2003, 44: 963-974[40]Argüello-Astorga G, Herrera-Estrella L. Evolution of light-regulated plant promoters. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 525-555[41]Guan Q-L(关秋玲), Chen H-X(陈焕新), Zhang Y(张毅), Li Q-L(李秋莉). Progresses on GT elements and GT factors in plants. Hereditas (遗传), 2009, 31(2): 123-130 (in Chinese with English abstract)[42]Wu W-H(武维华). Plant Physiology (2nd edn) (植物生理学•第2版). Beijing: Science Press, 2008. pp 183-184 (in Chinese)[43]Fang X-L(房孝良), Liu W(刘炜), An J(安静), Wang Q-G(王庆国). Isolation and characterization of an embryo-specific promoter OsESP1 from rice. Acta Agron Sin (作物学报), 2011, 37(10): 1904-1909 (in Chinese with English abstract)[44]Wang X-J(王旭静), Li W-M(李为民), Tang Q-L(唐巧玲), Jia S-R(贾士荣), Wang Z-X(王志兴). Function deletion analysis of light-induced Gacab promoter from Gossypium arboretum in transgenic tobacco. Acta Agron Sin (作物学报), 2009, 35(6): 1006-1012 (in Chinese with English abstract)[45]Shinozaki K, Dennis E S. Cell signalling and gene regulation global analyses of signal transduction and gene expression profile. Curr Opin Plant Biol, 2003, 6: 405-409[46]Acevedo-Hernández G J, León P, Herrera-Estrella L R. Sugar and ABA responsiveness of a minimal RBCS light-responsive unit is mediated by direct binding of ABI4. Plant J, 2005, 43: 506-519[47]Bartholomew D M, Bartley G E, Scolnik P A. Abscisic acid control of rbcS and cab transcription in tomato leaves. Plant Physiol, 1991, 96: 291-296[48]Weatherwax S C, Ong M S, Degenhardt J, Bray E A, Tobin E M. The interaction of light and abscisic acid in the regulation of plant gene expression. Plant Physiol, 1996, 111: 363-370[49]Strand A., Hurry V, Gustafsson P, Gardeström P. Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant J, 1997, 12: 605-614[50]Winicov I, Button J D. Accumulation of photosynthesis gene transcripts in response to sodium chloride by salt tolerant alfalfa cell. Planta, 1991, 183: 478-483 |
[1] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[2] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[3] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[4] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[5] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[6] | 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089. |
[7] | 王小纯, 王露露, 张志勇, 秦步坛, 于美琴, 韦一昊, 马新明. 小麦谷氨酰胺合成酶同工酶转录特点及其启动子序列分析[J]. 作物学报, 2021, 47(4): 761-769. |
[8] | 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236. |
[9] | 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484. |
[10] | 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028. |
[11] | 王慧敏,李新国,万书波,张智猛,丁红,李国卫,高文伟,彭振英. 花生膜联蛋白基因家族成员的结构和表达分析[J]. 作物学报, 2019, 45(3): 390-400. |
[12] | 赵翔,朱自亿,王潇楠,慕世超,张骁. 拟南芥RPT2与RIP1互作调节下胚轴向光弯曲的功能鉴定[J]. 作物学报, 2018, 44(12): 1802-1808. |
[13] | 施军琼, 王亚琴, 张天泉, 马玲, 桑贤春, 何光华. 水稻黄绿叶基因Yellow-Green Leaf 6 (YGL6)的表达模式与蛋白定位[J]. 作物学报, 2018, 44(05): 650-656. |
[14] | 秦丽霞, 李静, 张换样, 李盛, 竹梦婕, 焦改丽, 吴慎杰. 棉花半乳糖基转移酶基因GhGalT1启动子的克隆及表达分析[J]. 作物学报, 2018, 44(02): 218-226. |
[15] | 李敏,于太飞,徐兆师,张双喜,闵东红,陈明,马有志,柴守诚,郑炜君. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(08): 1161-1169. |
|