欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1828-1836.doi: 10.3724/SP.J.1006.2011.01828

• 耕作栽培·生理生化 • 上一篇    下一篇

NO对生长发育中棉花叶片NO含量及其对抗氧化物酶的影响

孟艳艳,范术丽,宋美珍,庞朝友,喻树迅*   

  1. 中国农业科学院棉花研究所 / 农业部棉花遗传改良重点实验室,河南安阳455000
  • 收稿日期:2011-03-03 修回日期:2011-06-25 出版日期:2011-10-12 网络出版日期:2011-07-28
  • 通讯作者: 喻树迅, E-mail: yu@cricaas.com.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2008ZX08005-002, 2009ZX08005-020B)资助。

Effects of NO on NO Contents and Anti-oxidative Enzymes in Cotton Leaf at Growth Stage

MENG Yan-Yan,FAN Shu-Li,SONG Mei-Zhen,PANG Chao-You,YU Shu-Xun*   

  1. Cotton Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455004, China
  • Received:2011-03-03 Revised:2011-06-25 Published:2011-10-12 Published online:2011-07-28
  • Contact: 喻树迅, E-mail: yu@cricaas.com.cn

摘要: 以早衰性状不同的棉花栽培品种为材料,在自然条件下和外施一氧化氮(nitric oxide, NO)的条件下,调查早熟棉花植株真叶和子叶衰老过程中NO含量变化和抗氧化酶活性及相关基因的表达。结果表明,大田条件下,NO含量在幼嫩叶片中最高,随着叶片的衰老含量逐渐降低;在叶片发育后期早衰材料的NO含量下降快,并且显著低于不早衰材料。室内条件下,植株发育过程中,NO含量在幼嫩子叶中最高在生长后期最低;外施SNP溶液后的植株,其NO含量在子叶的整个生育期都比对照组高,且两者差异显著。对照组和处理组的过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)的活性及相关基因的表达第7天较低,第14天最高,随后逐渐下降;在同一时期,处理组显著高于对照组,在生育后期表现的更为明显。外施SNP可显著降低参试品种过氧化物酶(POD)的活性和相关基因的表达。在子叶发育初期,外源NO对超氧化物歧化酶(SOD)的活性有抑制作用,随着叶片衰老,处理组的SOD活性又高于对照组。不同类型的SOD对NO的反应不同,Cu/Zn SOD最敏感,其中又以cCu/Zn SOD基因的作用更突出。NO通过调控植株体内CAT、APX、POD和SOD等氧化/抗氧化系统,延缓叶片的衰老进程。

关键词: 棉花, 叶片衰老, 一氧化氮, 抗氧化物酶

Abstract: Under natural condition and spraying exogenous NO, cotton cultivars with different senescence traits were used to investigate changes in NO contents, anti-oxidative enzymes and related gene expression during the aging process of euphylla and cotyledons. The results indicated that, under field condition, the NO contents showed the highest level in the young leaf and declined gradually with the progression of leaf senescence. The NO content in presenescent cultivar decreased faster and was significantly lower than that of non-presenescent cultivar at the late stage of leaf senescence. Under laboratory condition, the NO content of cotyledons was the highest in young leaf and the lowest at late growth stage. After application of SNP solution, the NO content was significantly higher in the treatment group than that of control group during the whole period of cotyledon development. The activities of catalase (CAT) and ascorbate peroxidase (APX) and their genes expressions were comparatively lower at the seventh day and reached the highest level at the fourteenth day both in the control and treatment groups, then declined with leaf development; at the same stage, the activities of CAT and APX in treatment group were significantly higher than control group, especially at the late stage of cotyledons. The activity of peroxidase (POD) and its gene expression declined significantly by spraying exogenous SNP. Although exogenous NO could inhibit the activity of superoxide dismutase (SOD) at early stage of cotyledon development, the treatment group demonstrated greater SOD activity than that of control group in the process of leaf senescence. The responses of different types of SOD to NO varied, and the Cu/Zn SOD was the most sensitive isoforms, among which cCu/Zn SOD’s genes played a more potent role. The physiological and molecular mechanism underlying the delaying effect of NO on leaf senescence is thus revealed by fine coordination of the activity of oxidation and anti-oxidation systems (CAT, APX, POD, and SOD) in plant.

Key words: Cotton, Leaf senescence, Nitric oxide, Anti-oxidative enzymes

[1]Mayer B, Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci, 1997, 22: 477-481
[2]Stamler J S, Lamas S, Fang F C. Nitrosylation, the prototypic redox-based signaling mechanism. Cell, 2001, 106: 675-683
[3]Qiao W, Fan L M. Nitric oxide signaling in plant responses to abiotic stresses. J Integr Plant Biol, 2008, 50: 1238-1246
[4]Wang P-H(王鹏程), Du Y-Y(杜艳艳), Song C-P(宋纯鹏). Research progress on nitric oxide signaling in plant cell. Chin Bull  Bot (植物学报), 2009, 44(5): 517-525 (in Chinese with English abstract)
[5]Mishina T E, Lamb C, Zeier J. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell Environ, 2007, 30: 39-52
[6]Corpas F J, Palma J M, Del Río L A, Barroso J B. Evidence supporting the existence of l-arginine-dependent nitric oxide synthase activity in plants. New Phytol, 2009, 184: 9-14
[7]Corpas F J, Barroso J B, Carreras A, Quiros M, Leon A M, Romero-Puertas M C, Esteban F J, Valderrama R, Palma J M, Sandalio L M. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol, 2004, 136: 2722-2733
[8]Guo F Q, Crawford N M. Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell, 2005, 17: 3436-3450
[9]Hung K T, Kao C H. Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J Plant Physiol, 2003, 160: 871-879
[10]Hung K T, Kao C H. Nitric oxide acts as an antioxidant and delays methyl jasmonate-induced senescence of rice leaves. J Plant Physiol, 2004, 161: 43-52
[11]Hung K T, Kao C H. Nitric oxide counteracts the senescence of rice leaves induced by hydrogen peroxide. Bot Bull Acad Sin, 2005, 46: 21-28
[12]Leshem Y Y, Wills R B H, Ku V V V. Evidence for the function of the free radical gas—nitric oxide (NO)—as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem, 1998, 36: 825-833
[13]Jasid S, Galatro A, Villordo J J, Puntarulo S, Simontacchi M. Role of nitric oxide in soybean cotyledon senescence. Plant Sci, 2009, 176: 662-668
[14]Yu S X, Song M Z, Fan S L, Wang W, Yuan R H. Biochemical genetics of short-season cotton cultivars that express early maturity without senescence. J Integr Plant Biol, 2005, 47: 334-342
[15]Yu S-X(喻树迅), Song M-Z(宋美珍), Fan S-L(范术丽), Yuan R-H(原日红). Studies on biochemical assistant breeding technology of earliness without premature senescence of the short-season upland cotton. Sci Agric Sin (中国农业科学), 2005, 38(4): 664-670 (in Chinese with English abstract)
[16]Sun Y(孙云), Jiang C-L(江春柳), Lai Z-X(赖钟雄), Shao W(邵巍), Wang X-Y(王秀英). Determination and observation of the changes of the ascorbate peroxidase activities in the fresh leaves of tea plants. Chin J Trop Crops (热带作物学报), 2008, 29(5): 562-566 (in Chinese with English abstract)
[17]Wang D-L(王德龙), Yu J-W(于霁雯), Yu S-X(喻树迅), Zhai H-H(翟红红), Fan S-L(范术丽), Song M-Z(宋美珍), Zhang J-F(张金发). The construction of cDNA library from cotton seed. Cotton Sci (棉花学报), 2009, 21(5): 351-355 (in Chinese with English abstract)
[18]Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot, 2002, 53: 1331-1341
[19]Manjunatha G, Lokesh V, Neelwarne B. Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv, 2010, 28: 489-499
[20]Hayashi K, Noguchi N, Niki E. Action of nitric oxide as an antioxidant against oxidation of soybean phosphatidyl choline liposomal membranes. FEBS Lett, 1995, 370: 37-40
[21]Wink D A, Hanbauer I, Krishna M C, DeGraff W, Gamson J, Mitchell J B. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA, 1993, 90: 9813-9817
[22]Caro A, Puntarulo S. Nitric oxide decreases superoxide anion generation by microsomes from soybean embryonic axes. Physiol Plant, 1998, 104: 357-364
[23]Tewari R K, Kumar P, Kim S, Hahn E J, Paek K Y. Nitric oxide retards xanthine oxidase-mediated superoxide anion generation in Phalaenopsis flower: an implication of NO in the senescence and oxidative stress regulation. Plant Cell Rep, 2009, 28: 267-279
[24]Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K. A he-   terocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell, 2008, 20: 3148-3162
[25]Šimonovi?ová M, Huttová J, Mistrik I, Iroká B, Tamás L. Root growth inhibition by aluminum is probably caused by cell death due to peroxidase-mediated hydrogen peroxide production. Protoplasma, 2004, 224: 91-98
[26]Almagro L, Gómez Ros L, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreo M. Class III peroxidases in plant defence reactions. J Exp Bot, 2009, 60: 377-390
[27]Rio L A, Corpas F J, Sandalio L M, Palma J M, Barroso J B. Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life, 2003, 55: 71-81
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!