欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 2030-2038.doi: 10.3724/SP.J.1006.2011.02030

• 耕作栽培·生理生化 • 上一篇    下一篇

不同品质类型小麦籽粒贮藏蛋白组分含量及相关酶活性

石玉1,谷淑波1,于振文1,*,许振柱2   

  1. 1山东农业大学农业部作物生理生态与栽培重点开放实验室, 山东泰安 271018; 2中国科学院植物研究所植被与环境变化国家重点实验室, 北京100093
  • 收稿日期:2011-04-07 修回日期:2011-07-15 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 通讯作者: 于振文, E-mail: yuzw@sdau.edu.cn, Tel: 0538-8241484
  • 基金资助:

    本研究由农业部现代小麦产业技术体系项目(nycytx-03)资助。

Contents of Protein Components Stored in Grains and Activities of Related Enzymes in Wheat Cultivars in Different Quality Types

SHI Yu1,GU Shu-Bo1,YU Zhen-Wen1,*,XU Zhen-Zhu2   

  1. 1 Key Laboratory of Crop Ecophysiology and Cultivation, Ministry of Agriculture, Shandong Agricultural University, Tai’an, Shandong 271018, China; 2 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
  • Received:2011-04-07 Revised:2011-07-15 Published:2011-11-12 Published online:2011-09-06
  • Contact: 于振文, E-mail: yuzw@sdau.edu.cn, Tel: 0538-8241484

摘要: 以小麦品种藁城8901、9411、济南17、烟农19、泰山23和鲁麦21为材料,采用反相高效液相色谱法研究了不同小麦品种籽粒贮藏蛋白各组分含量积累动态及相关酶活性的差异。依据国家标准GB/T17892-1999,将6个品种分为一等强筋(I)、二等强筋(II)和中筋(III) 3组。I组和II组比较,籽粒贮藏蛋白和总蛋白含量无显著差异,I组籽粒谷蛋白含量高于II组,醇溶蛋白含量与谷蛋白含量的比值(醇/谷比值)低于II组。花后20~36 d,籽粒醇溶蛋白含量为II组>I组>III组;花后20 d,谷蛋白含量为I组显著高于II组和III组,醇/谷比值为II组显著高于I组和III组;花后28 d和36 d,谷蛋白含量为I组>II组>III组,醇/谷比值为II组> III组>I组,表明灌浆中后期谷蛋白和醇溶蛋白积累速率的不一致性,导致不同品种醇/谷比值的差异。花后12 d,I组的高分子量谷蛋白亚基含量显著高于II组和III组;花后20 d至成熟期,为I组>II组>III组。不同组间低分子量谷蛋白亚基含量积累动态的差异与谷蛋白一致。花后12 d和20 d,旗叶谷氨酰胺合成酶活性与籽粒谷蛋白含量、高分子量谷蛋白亚基与低分子量谷蛋白亚基含量的比值(HMW/LMW)呈极显著或显著正相关,而花后20 d,其活性与醇/谷比值呈显著负相关;花后20 d和28 d,内肽酶活性与谷蛋白含量、HMW/LMW呈极显著正相关,与醇溶蛋白含量呈显著正相关,说明在籽粒灌浆前中期旗叶谷氨酰胺合成酶活性高,中后期内肽酶活性高,则籽粒谷蛋白、醇溶蛋白含量及HMW/LMW高,醇/谷比值低,利于形成一等强筋小麦的蛋白质品质。

关键词: 小麦, 品质类型, 蛋白质组分, 变化动态, 酶活性

Abstract: Stored protein content and its components are determinative factors of wheat processing quality. The activities of enzymes involved in nitrogen metabolism impact the accumulations of protein components. However, the effect of enzyme activities on stored protein content in grain is not clearly understood. In this study, we used six wheat cultivars grouped into I-type (GC8901 and 9411, first-class strong gluten), II-type (Jinan 17 and Yannong 19, second-class strong gluten), and III-type (Taishan 23, and Lumai 21, medium gluten) to observe the dynamic accumulations of stored protein components in grains and the activities of related enzymes in leaves during grain filling. The contents of total protein and stored protein were not significantly different between I-type and II-type, but type-I had higher glutenin content and lower ratio of Gli-to-Glu than type-II. Gliadin contents were presented with the order of type-II > type-I > type-III from 20 d after anthesis (DAA) to 36 DAA. Type-II had the highest ratio of Gli-to-Glu from 20 to 36 DAA, and type-III ranked the second and without significant difference with type-I at 20 DAA. Glutenin contents were presented with the order of type-I > type-II > type-III from 28 to 36 DAA. The accumulation rates of glutenin and gliadin contents at the medium-late filling stage were different among cultivars, which resulted in the difference of raito of Gli-to-Glu. The HMW-GS content was higher in type-I than in type-II and type-III at 12 DAA, whereas showed the order of type-II > type-III > type-I from 20 DAA to maturity. The glutamine synthetase activity in flag leaf had positive correlations with glutenin content (P < 0.01) and ratio of HMW/LMW (P < 0.05) at 12 DAA and 20 DAA, but a negative correlation with the ratio of Gli-to-Glu at 20 DAA (P < 0.05). The endopeptidase activity in flag leaf had positive correlations with glutenin content (P < 0.01), ratio of HMW/LMW (P < 0.01), and gliadin content (P < 0.05) at 20 DAA and 28 DAA. High GS activity at the early-medium filling stage and high EP activity at the medium-late filling stage resulted in high contents of glutenin and gliadin, high ratio of HMW/LMW, and low ratio of Gli-to-Glu, which is favorable for high processing quality of the first-class strong-gluten wheat.

Key words: Wheat cultivar, Quality type, Protein component, Dynamic change, Enzyme activity

[1]D’Ovidio R, Masci S. The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci, 2004, 39: 321–339
[2]Liu L(刘丽), Zhou Y(周阳), He Z-H(何中虎), Wang D-S(王德森), Zhang Y(张艳), Pefia R J. Effect of allelic variation in HMW and LMW glutenin subunits on the processing quality in common wheat. Sci Agric Sin (中国农业科学), 2004, 37(1): 8–14 (in Chinese with English abstract)
[3]Zhang P P, He Z H, Zhang Y, Xia X C, Chen D S, Zhang Y. Association between SDS-unextractable polymeric protein (%UPP) and end use quality in Chinese bread wheat cultivars. Cereal Chem, 2008, 85: 696–700
[4]Shi Y(石玉), Zhang Y-L(张永丽), Yu Z-W(于振文). Contents of grain protein components and their relationships to processing quality in wheat. Acta Agron Sin (作物学报), 2009, 35(7): 1306–1312 (in Chinese with English abstract)
[5]Zhang P P, He Z H, ZhangY, Xia X C, Liu J J, Yan J, Zhang Y. Pan bread and Chinese white salted noodle qualities of Chinese winter wheat cultivars and their relationship with gluten protein fractions. Cereal Chem, 2007, 84: 370–378
[6]Wieser H, Kieffer R. Correlations of the amount of gluten protein types to the technological properties of wheat flours determined on a micro-scale. J Cereal Sci, 2001, 34: 19–27
[7]Tang J-W(唐建卫), Liu J-J(刘建军), Zhang P-P(张平平), Zhang Y(张艳), Li H-S(李豪圣), Zhao Z-D(赵振东), Qu Y-Y(曲延英), He Z-H(何中虎). Dough properties and loaf quality stability in wheat cultivar Jimai 20 and their relationship with protein fractions. Acta Agron Sin (作物学报), 2007, 33(11): 1788–1793 (in Chinese with English abstract)
[8]Tang J-W(唐建卫), Liu J-J(刘建军), Zhang P-P(张平平), Zhang Y(张艳), Xiao Y-G(肖永贵), Qu Y-Y(曲延英), Zhang Y(张勇), He Z-H(何中虎). Effects of gluten protein fractions on dough property and products quality in common wheat. Sci Agric Sin (中国农业科学), 2008, 41(10): 2937–2946 (in Chinese with English abstract)
[9]Wang Y-F(王月福), Yu Z-W(于振文), Li S-X(李尚霞), Yu S-L(余松烈). Effect of nitrogen nutrition on the change of key enzyme activity during the nitrogen metabolism and kernel protein content in winter wheat. Acta Agron Sin (作物学报), 2002, 28(6): 743–748 (in Chinese with English abstract)
[10]Sun M(孙敏), Guo P-Y(郭平毅), Gao Z-Q(高志强), Wang P(王鹏), Shi J(时静), Miao G-Y(苗果园). Protein accumulation in grains of wheat cultivars differing in drought tolerance and its regulation by nitrogen application amount under irrigated and dryland conditions. Acta Agron Sin (作物学报), 2010, 36(3): 486–495 (in Chinese with English abstract)
[11]Ma X-M(马新明), Li L (李琳), Zhao P (赵鹏), Xiong S-P(熊淑萍), Guo F(郭飞). Effects of water control on activities of nitrogen assimilation enzymes and grain quality in winter wheat. Acta Phytoecol Sin (植物生态学报), 2005, 29(1): 48–53 (in Chinese with English abstract)
[12]Wang X-C(王小纯), Xiong S-P (熊淑萍), Ma X-M (马新明), Zhang J-J(张娟娟), Wang Z-Q(王志强). Effects of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in speciality wheat cultivar. Acta Ecol Sin (生态学报), 2005, 25(4): 802–807(in Chinese with English abstract)
[13]He Z-F(何照范). Analytical Techniques for Grain Quality of Cereals and Oils (粮油籽粒品质及分析技术). Beijing: Agriculture Press, 1985. pp 37–41 (in Chinese)
[14]Wieser H, Antes S, Seilmeier W. Quantitative determination of gluten protein types in wheat flour by reversed-phase high-per-formance liquid chromatography. Cereal Chem, 1998, 75: 644–650
[15]Oneal D, Joy K W. Glutamine synthetase of pea leaves-divalent cation effects, substrate specificity, and other properties. Plant Physiol, 1974, 54: 773–779
[16]Vernon A W. Ribulose bisphosphate carboxylase and protenlytic activity in wheat leafs from anthesis through senescence. Plant Physiol, 1979, 64: 884–887
[17]Zhang J(张晶), Wang J-A(王姣爱), Dang J-Y(党建友), Zhang D-Y(张定一). Effect of nitrogen application rate on dynamic changes of grain protein and composition content in wheat. Acta Agric Boreali-Occidentalis Sin (西北农业学报), 2010, 19(4): 58–61 (in Chinese with English abstract)
[18]Zhu X-K(朱新开), Zhou J-L(周君良), Feng Z-N(封超年), Gou W-S(郭文善), Peng Y-X(彭永欣). Differences of protein and its component accumulation in wheat for different end uses. Acta Agron Sin (作物学报), 2005, 31(3): 342–347 (in Chinese with English abstract)
[19]Zhu Y-J(朱云集), Ma D-Y(马冬云), Li X-Y(李向阳), Guo T-C(郭天财), Wang C-Y(王晨阳). Accumulation dynamics of protein and starch components in grain of two winter wheat cultivars with different canopy temperature characteristics during the filling stage. J Plant Ecol (植物生态学报), 2006, 30(2): 352–358 (in Chinese with English abstract)
[20]Zhang P P, He Z H, Chen D S, Zhang Y, Larroque O R, Xia X C. Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread. J Cereal Sci, 2007, 46: 1–10
[21]Weegels P L, Hamer R J, Schofield J D. Functional properties of wheat glutenin. J Cereal Sci, 1996, 23: 1–18
[22]Scanlon M G, Ng P K W, Lawless D E, Bushuk W. Suitability of reversed-phase high-performance liquid chromatographic separation of wheat proteins for long-term statistical assessment of bread making quality. Cereal Chem, 1990, 67: 395–399
[23]Paula M M, Ligia M L, Isabel M S. Expression of the plastid-located glutamine synthase of Medicago truncatula: accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids. Plant Physiol, 2003, 132: 390–399
[24]Dai T-B(戴廷波), Cao W-X(曹卫星), Sun C-F(孙传范), Jiang D(姜东), Jing Q(荆奇). Effect of enhanced ammonium nutrition on photosynthesis and nitrate reductase and glutamine synthetase activities of winter wheat. Chin J Appl Ecol (应用生态学报), 2003, 14(9): 1529–1532 (in Chinese with English abstract)
[25]Wang X-Y(王小燕), Yu Z-W(于振文). Differences in characteristics of quality and related enzymes activity of different wheat cultivars. Sci Agric Sin (中国农业科学), 2005, 38(10): 1980–1988 (in Chinese with English abstract)  
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!