欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1088-1096.doi: 10.3724/SP.J.1006.2012.01088

• 耕作栽培·生理生化 • 上一篇    下一篇

氮肥运筹对孕穗期受渍冬小麦旗叶叶绿素荧光与籽粒灌浆特性的影响

武文明1,2,陈洪俭2,李金才1*,魏凤珍1,王世济2,周向红3   

  1. 1安徽农业大学农学院, 安徽合肥 230036; 2安徽省农业科学院玉米研究中心, 安徽合肥 230031; 3安徽省五河县龙潭湖示范繁殖农场, 安徽五河 233300
  • 收稿日期:2011-10-08 修回日期:2012-01-19 出版日期:2012-06-12 网络出版日期:2012-03-05
  • 通讯作者: 李金才, E-mail: ljc5122423@126.com, Tel: 0551-5786980
  • 基金资助:

    本研究由国家自然科学基金项目(31071356)和国家科技支撑计划项目(2009BADA6B02, 2009BADA6B03)项目资助。

Effects of Nitrogen Fertilization on Chlorophyll Fluorescence Parameters of Flag Leaf and Grain Filling in Winter Wheat Suffered Waterlogging at Booting Stage

WU Wen-Ming1,2,CHEN Hong-Jian2,LI Jin-Cai1,*,WANG Shi-Ji2,WEI Feng-Zhen1,ZHOU Xiang-Hong3   

  1. 1 College of Agronomy, Anhui Agricultural University, Hefei 230036, China; 2 Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; 3 Wuhe Farm of Anhui Province, Wuhe 233300, China
  • Received:2011-10-08 Revised:2012-01-19 Published:2012-06-12 Published online:2012-03-05
  • Contact: 李金才, E-mail: ljc5122423@126.com, Tel: 0551-5786980

摘要: 以小麦品种皖麦54为试验材料,研究不同氮肥运筹对孕穗期受渍冬小麦旗叶叶绿素荧光特性的影响。结果表明,孕穗期小麦旗叶叶绿素含量最高,随后下降,至成熟期降到最低;渍水处理叶绿素含量下降幅度高于对照处理。对照处理孕穗期后叶绿素荧光参数Fv/Fm、Fv/Foqp随小麦生育期的推进呈先增加后降低的变化趋势,于渍水处理孕穗期后第11~20天达到最高峰,NPQ呈先降低再升高的趋势。孕穗期渍水7 d后Fv/Fm、Fv/Foqp均呈“低–高–低”的变化趋势,与对照相比,Fv/Fm低1.8%~2.3%,Fv/Fo低8.0%~10.9%,ΦPSII则显著低于对照。基肥30%+拔节肥50%+孕穗肥20%(N4)处理生育后期旗叶叶绿素含量显著高于全部氮肥基施(N1)处理,而Fv/Fo、Fv/Fmqp显著高于N1和基肥70%+拔节肥30%(N2)处理。叶绿素含量与Fv/FmqpΦPSII呈显著正相关,与NPQ呈显著负相关。ETR-PAR响应曲线的拟合结果表明,孕穗期渍水7 d小麦生育后期旗叶ETRmaxαEk值较对照降低。N4的旗叶ETRmaxαEk均高于N1和N2。孕穗期渍水7 d条件下不同氮肥运筹方式间各叶绿素荧光参数变异系数高于对照,氮肥的补偿效应较对照明显。氮肥后移运筹方式显著减轻渍水逆境对光合器官的破坏,使小麦生育后期功能叶具有较强的光捕获能力和光化学效率,改善了旗叶光合性能,使灌浆期延长,平均灌浆速率提高,从而较氮肥前移处理显著提高小麦千粒重。

关键词: 渍害, 氮肥运筹方式, 叶绿素荧光, 快速光曲线, 冬小麦

Abstract: Waterlogging has great influence on yield of winter wheat in some areas of China. Nitrogen (N) application is believed to be able to improve photosynthesis of flag leaf and increase final yield. To understand the response of chlorophyll fluorescence parameters of wheat flag leaf to waterlogging stress at booting stage and the effect of N fertilization, we carried out a field experiment from Autumn of 2008 to Summer of 2010 using winter wheat cultivar “Wanmai 54”. The waterlogging stress was imposed for 7 d at booting stage. Four N treatments were designed for waterlogging stress and the control (normal watering) of which N application rate was 240 kg ha-1 in all treatments but with different proportions at land preparation, jointing, and booting stages. The results showed that the maximum chlorophyllcontent of flag leaves occurred at the booting stage. Under normal watering condition, Fv/Fm, Fv/Fo, and qp showed “high-low” variation, and the maximum values were observed between May 3 and May 11. However, under waterlogging stress at booting stage, Fv/Fm, Fv/Fo, and qp showed “low-high-low” curve. Compared to control treatment, waterlogging at booting stage significantly decreased Fv/Fm, Fv/Fo, qp, and ΦPSII (P<0.05), and NPQ significantly increased (P<0.05). With the delay of N fertilization, Fv/Fm, Fv/Fo, qp, and ΦPSII increased significantly compared to the forward N fertilization treatments. Postpone of N supply improved photosynthetic capacity by increasing photosynthetic pigment contents, and enhancing photosynthetic efficiency under water deficit. The chlorophyllcontent was positively correlated with Fv/Fm, qp, and ΦPSII, (P<0.05), but negatively correlated relationship with NPQ (P<0.01). From the chlorophyll fluorescence rapid light curves, we found that, compared to normal watering, waterlogging stress at booting stage significantly decreased the maximal relative electron transport rate(ETRmax), initial slope (α), and half saturation point of light intensity (Ek). Postpone of N fertilizer application alleviated the photodamage to PSΙΙ caused by water stress, and the compensation effect of late N fertilization occurred earlier than that of early N fertilization, which resulted in longer filling period, higher mean filling rate, and ultimately increased 1000-grain weight

Key words: Waterlogging, Nitrogen fertilization, Chlorophyll fluorescence, Rapid light curve, Winter wheat

[1]Zhang L-M(张雷明), Shang-Guan Z-P(上官周平), Mao M-C(毛明策), Yu G-R(于贵瑞). Effects of long-term application of nitrogen fertilizer on leaf chlorophyll fluorescence of upland winter wheat. Chin J Appl Ecol (应用生态学报), 2003, 14(5): 695–698 (in Chinese with English abstract)

[2]Wang X-Y(王小燕), Wang D(王东), Yu Z-W(于振文). Interactions of water management and nitrogen application on photosynthetic character and kernel yield and nitrogen use efficiency and water use efficiency in wheat. Agric Res Arid Areas (干旱地区农业研究), 2009, 27(6): 17–22 (in Chinese with English abstract)

[3]Li J-C(李金才), Chang J(常江), Wei F-Z(魏凤珍). Relationship between waterlogging physiology and production in winter wheat. Phant Physiol Comm (植物生理学通讯), 1997, 33(4): 304–312 (in Chinese)

[4]Li J-C(李金才), Wei F-Z(魏凤珍), Yu S-L(余松烈), Yu Z-W(于振文). Effect of waterlogging on senescence of winter wheat root system at booting stage. Chin J Appl Ecol (应用生态学报), 2000, 11(5): 723–726 (in Chinese with English abstract)

[5]Xiang H-W(向厚文), Chu Y-S(褚瑶顺), Liang S-C(梁少川), Zhuang Z-Y(庄宗英), Li M-F(李梅芳). Identification of tolerance to waterlogging and the injury control in wheat. Hubei Agric Sci (湖北农业科学), 1993, (5): 10–16 (in Chinese)

[6]Jiang D(姜东), Tao Q-N(陶勤南), Zhang G-P(张国平). Effects of waterlogging on senescence of flag leaf and root of wheat Yunmai 5. Chin J Appl Ecol (应用生态学报), 2002, 13(11): 1519–1521 (in Chinese with English abstract)

[7]Fan X-M(范雪梅), Jiang D(姜东), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星). Effects of nitrogen supply on nitrogen metabolism and grain protein accumulation of wheat under different water treatments. Chin J Ecol (生态学杂志), 2006, 25(2): 149–154 (in Chinese with English abstract)

[8]Fan X-M(范雪梅), Jiang D(姜东), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星). Effects of nitrogen on grain yield and quality in wheat grown under drought of waterlogging stress from anthesis to maturity. Acta Phytoecol Sin (植物生态学报), 2006, 30(1): 71–77 (in Chinese with English abstract)

[9]Musgrave M E. Waterlogging effects on yield and photosynthesis in eight wheat cultivars. Crop Sci, 1994, 34: 1314–1320

[10]Kang G-Z(康国章), Wang Y-H(王永华), Guo T-C(郭天财), Zhu Y-J(朱云集). Effects of nitrogen application on photosynthetic characteristics and yield of super-high-yielding wheat in the late growing and developing period. Acta Agron Sin (作物学报), 2003, 29(1): 82–86 (in Chinese with English abstract)

[11]Ma D-H(马东辉), Zhao C-X(赵长兴), Wang Y-F(王月福), Wu G(吴刚), Lin Q(林琪). Effects of nitrogen fertilizer rate and post-anthesis soil water content on photosynthetic characteristics in flag leaves and yield of wheat. Acta Ecol Sin (生态学报), 2008, 28(10): 4896–4901(in Chinese with English abstract)

[12]Guo T-C(郭天财), Feng W(冯伟), Zhao H-J(赵会杰), Zhu Y-J(朱云集), Wang C-Y(王晨阳), Yan Y-L(阎耀礼), Luo Y(罗毅). Effects of water and nitrogen application on photosynthetic characteristics and yield of winter wheat in the late growing and developing period. Acta Bot Boreal-Occident Sin (西北植物学报), 2003, 23(9): 1512–1517 (in Chinese with English abstract)

[13]Ju Z-C(鞠正春), Yu Z-W(于振文). Effects of nitrogen topdressing at different growth stage on chlorophyll fluorescence of winter wheat flag leaves. Chin J Appl Ecol (应用生态学报), 2006, 17(3): 395–398 (in Chinese with English abstract)

[14]Jiang D, Dai T, Jing Q, Cao W, Zhou Q, Zhao H, Fan X. Effects of long-term fertilization on leaf photosynthetic characteristics and grain yield in winter wheat. Photosynthetica, 2004, 42: 439–446

[15]Shangguan Z P, Shao M A, Dyckmans J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. Plant Physiol, 2000, 156: 46–51

[16]Adrienn G, Irma T, Agnes G, Jolan C, Attila P, Laszlo C, Laszlo E. Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: changes in flag leaf photosynthetic activity, ABA levels, and grain yield. J Plant Growth Regul, 2009, 28: 167–176

[17]Guarini J M, Moritz C. Modelling the dynamics of the electron transport rate measured by PAM fluorimetry during rapid light curve experiments. Photosynthetica, 2009, 47: 206–214

[18]Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 313–349

[19]Zhao S-J(赵世杰), Liu H-S(刘华山), Dong X-C(董新纯). Experimental Guide for Plant Physiology (植物生理实验指导). Beijing: China Agricultural Science and Technology Press, 1998. pp 68–72

[20]Platt T, Gallegos C L, Harrison W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res, 1980, 38: 687–701

[21]Ralph P J, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Bot, 2005, 82: 222–237

[22]Shen X-S(沈学善), Zhu Y-J(朱云集), Guo T-C(郭天财), Li G-Q(李国强), Qu H-J(屈会娟). Effects of sulphur application on characteristics of grain filling and grain yield of winter wheat cultivar ‘Yumai 50’. Acta Bot Boreal-Occident Sin (西北植物学报), 2007, 27(6): 1265–1269 (in Chinese with English abstract)

[23]Dawson S P, Dennison W C. Effects of ultraviolet and photosynthetically active radiation on five seagrass species. Mar Biol, 1996, 125: 629–638

[24]Song Y-Z(宋玉芝), Cai W(蔡炜), Qin B-Q(秦伯强). Photosynthetic fluorescence characteristics of floating-leaved and sumbersed macrophytes commonly found in Taihu Lake. Chin J Appl Ecol (应用生态学报), 2009, 20(3): 569–573 (in Chinese with English abstract)

[25]Liu W J, Yuan S, Zhang N H, Lei T, Duan H G, Liang H G, Lin H H. Effects of water stress on photosystem II in two wheat cultivars. Biol Plant, 2006, 50: 597–602

[26]Hichem H, Naceur E, Mounir D. Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea may L.) varieties. Photosynthetica, 2009, 47: 517–526
[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[3] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[4] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[5] 竞霞, 邹琴, 白宗璠, 黄文江. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展[J]. 作物学报, 2021, 47(11): 2067-2079.
[6] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[7] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[8] 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257.
[9] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[10] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[11] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[12] 侯红乾,林洪鑫,刘秀梅,冀建华,刘益仁,蓝贤瑾,吕真真,周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响[J]. 作物学报, 2020, 46(02): 280-289.
[13] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[14] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
[15] 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!