欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1127-1134.doi: 10.3724/SP.J.1006.2012.01127

• 研究简报 • 上一篇    下一篇

钾代谢相关基因在烟草中的表达

夏凯1,2,徐双红1,王翔1,戴林建2,李鹏飞3,罗建新2,齐绍武2,杨琼2,周清明2,*   

  1. 1湖南中烟工业有限责任公司, 湖南长沙410014;2湖南农业大学, 湖南长沙410128;3云南省烟草公司文山州公司, 云南文山 663000
  • 收稿日期:2011-09-21 修回日期:2012-01-15 出版日期:2012-06-12 网络出版日期:2012-04-06
  • 通讯作者: 周清明, E-mail: zqm8051@hunau.net, Tel: 0731-84618051
  • 基金资助:

    本研究由湖南中烟工业有限公司项目(2008-YC-0001)资助。

Expression of Potassium Metabolism-Related Gene in Tobacco

XIA Kai1,2,XU Shuang-Hong1,WANG Xiang1,DAI Lin-Jian2,LI Peng-Fei3,LUO Jian-Xing2,QI Shao-Wu2,YANG Qiong2,ZHOU Qing-Ming2,*   

  1. 1 Hunan Tobacco Industrial Co., Ltd, Changsha 410014, China; 2 Hunan Agricultural University, Changsha 410128, China; 2 Wenshan Company of Yunnan Provincial Tobacco Company, Wenshan 663000, China
  • Received:2011-09-21 Revised:2012-01-15 Published:2012-06-12 Published online:2012-04-06
  • Contact: 周清明, E-mail: zqm8051@hunau.net, Tel: 0731-84618051

摘要: 以钾高效基因型K2、K3、K5、K7、K9与常规烤烟品种K326为材料, 采用漂浮育苗、移栽砂培的方法, 利用实时定量PCR调查钾代谢相关基因在烟草叶片中的表达情况, 并测定不同材料的钾吸收动力学参数和钾利用率。结果表明, K2、K7和K9是典型的富钾型, 12个钾代谢相关基因中TORK1NtTPK1的表达水平相对较高。5个富钾型的钾吸收能力显著强于K326。但它们在高钾环境下钾素吸收能力强而利用率较低, 在低钾环境下钾吸收能力强且利用率相对较高, 尤其是品系K2、K7和K9钾的经济利用率相对较高。

关键词: 钾代谢, 基因, 表达, 烟草

Abstract: The quality of flue-cured tobacco in production is currently limited by low potassium level in leaf. A simple and effective way to alleviate the supply of potassium in soil is screening the potassium-enriched flue-cured tobacco types. In the experiment, the tobacco seedlings were cultured in nutrient solution, and then replanted in sand soil. To investigate the potassium metabolism related gene’s expression and kinetic parameters of potassium uptake and utilization with six different lines including five potassium-enriched genotypes of K2, K3, K5, K7, and K9 and a conventional genotype of K326. The results showed that the tobacco lines K2, K7, and K9 were typical potassium-enriched genotypes, TORK1 and NtTPK1 out of 12 genes performed high expression. The ability of potassium absorption of K3, K5, K9, K7, and K2 was significantly stronger than that of K326. The potassium absorption abilities of potassium -enriched types of K9, K2, K7, K3, and K5 were stronger but their use efficiencies were lower than these of K326 in high potassium environment, and higher in low potassium environment, especially for the genotypes K2, K7, and K9.

Key words: Potassium metabolism, Gene, Expression, Nicotiana tabacum

[1]Chaplin J R. Production factors affecting chemical compounds of the tobacco leaf. Recent Adv Tob Sci, 1980, (6): 3–63

[2]Sims J L, Casy M, Legget J E. Effect of transplant water fertilization on growth and chemical composition of burley tobacco. Annual report of the college of agriculture and the K. Y. Agric Exp Station, 1981, 59–60

[3]Cao Z-H(曹志洪), Hu G-S(胡国松). Relationship between control of potassium and trace elements and quality of tobacco leaf. Soils (土壤), 1993, 25(3): 119–128 (in Chinese)

[4]Anderson J A, Huprikar S S, Kochian L V, Lucas W J, Gaber R F. Function expression of a probable Arabidopsis thaliana potassium channel in Saccharomycex cerevisiae. Proc Natl Acad Sci USA, 1992, 89: 3736–3740

[5]Sentenac H, Bonneaud N, Minet M. Cloning and expression in yeast of a plant potassium ion transport system. Science, 1992, 256: 663–665

[6]Lu L-M(鲁黎明). In silico cloning and bioinformatic analysis of TPK1 gene in tobacco. Sci Agric Sin (中国农业科学), 2011, 44(1): 28–35 (in Chinese with English abstract)

[7]Sano T, Becker D, Ivashikina N, Wegner L H, Zimmermann U, Roelfsema M R, Nagata T, Hedrich R. Plant cells must pass a K+ threshold to re-enter the cell cycle. Plant J, 2007, 50: 401–413

[8]Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema M R G, Hedrich R. GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+ -sensing ion channel. FEBS, 2000, 486, 93–98

[9]Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very A A, Simonneau T, Thibaud J B, Sentenac H. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA, 2003, 100: 5549–5554

[10]Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L, Wu W H. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125(7): 1347–1360

[11]Dai L-J(戴林建), Xu S-H(徐双红), Zhu L-S(朱列书), Zhong J(钟军), Xia K(夏凯). Research of tobacco offspring characters variation causing by introducted DNA of high potassium plant. Crop Res (作物研究), 2010, (2): 109–111 (in Chinese with English abstract)

[12]Dai L-J(戴林建), Xu S-H(徐双红), Sun H-L(孙焕良), Wang K(王坤), Zhong J(钟军). SRAP analysis on the purity of tobacco D4 generation with portulaca DNA. Tob Sci (烟草科技), 2010, (7): 48–52 (in Chinese with English abstract)

[13]Yang T-Z(杨铁钊), Peng Y-F(彭玉富). Potassium accumulation characteristics of rich-potassium genotypic flue-cured tobacco. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(5): 750–753 (in Chinese)

[14]Yang T-Z(杨铁钊), Yang Z-X(杨志晓), Nie H-Z(聂红资), Zhang X-Q(张小全), Liu Y-J(刘友杰), Shang X-Y(尚晓颍), Ren Z-Y(任周营), Fan J-H(范进华). Potassium accumulation and root physiological characteristics of potassium-enriched flue-cured tobacco genotypes. Acta Agron Sin (作物学报), 2009, 35(3): 535–540 (in Chinese with English abstract)

[15]Zhao X-Q(赵学强), Jie X-L(介晓磊), Li Y-T(李有田), Xu X-J(许仙菊), Tan J-F(谭金芳), Hua D-L(化党领). Studies in screening indices and screening environments for efficient potassium wheat genotypes. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(2): 277–281 (in Chinese with English abstract)

[16]Verwoerd T C, Dekker B M, Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucl Acids Res, 1989, 17: 2362

[17]Guo Z-K(郭兆奎), Yang Q(杨谦), Yan P-Q(颜培强), Wan X-Q(万秀清). Cloning and homology modeling of a potassium channel gene NKC1 from Nicotiana rustica. Acta Tab Sin (中国烟草学报), 2008, 14(5): 63–68 (in Chinese with English abstract)

[18]Liu K, Luan S. Intracellular potassium sensing of SKOR, a shaker-type K-channel from Arabidopsis. Plant J, 2006, 46, 260–268

[19]Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud J B, Sentenac H. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem, 2001, 276, 3215–3221

[20]Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud J B, Sentenac H. Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell, 1998, 94, 647–655

[21]Mao R-D(毛达如). Plant Nutrition Research (植物营养研究). Beijing: Beijing Agricultural University Press, 1994. pp 132–135 (in Chinese)

[22]Min S-Z(闵水珠). Molecular biology research progress on plant potassium ion channel. Acta Agric Zhejiangensis (浙江农业学报), 2005, 17(3): 163–169 (in Chinese with English abstract)

[23]Shin R, Schachtman D P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA, 2004, 101: 8827–8832

[24]Zhao X-Q(赵学强), Jie X-L(介晓磊), Li Y-T(李有田), Xu X-J(许仙菊), Tan J-F(谭金芳), Hua D-L(化党领). Dynamics analysis of absorption of potassium ion in wheat with different genotypes. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(3): 307–312 (in Chinese with English abstract)

[25]Wang Z-Q(汪自强), Dong M-Y(董明远). Efficiency of using potassium for spring soybean varieties with different level of pitassium. Soybean Sci (大豆科学), 1996, 15(3): 202–207 (in Chinese with English abstract)

[26]Su B, Han X G, Huang J H, Qu C M. The nutrient use efficiency (NUE) of plants and its implications on the strategy of plant adaptation to nutrient Stressed environments. Acta Ecol Sin, 2000, 20: 335–343

[27]Bridgham S D, McClaugherty C A, Richardson C J, Pastor J. Nutrient-use-efficiency: a litter fall index, a model and a test along a nutrient availability gradient in North Carolina peat lands. Am Nat, 1995, 145: 1–21

[28]Jiang C-C(姜存仓), Wang Y-H(王运华), Lu J-W(鲁剑巍), Xu F-S(徐芳森), Gao X-Z(高祥照). Advances of study on the K-Efficiency in different plant genotypes. J Huazhong Agric Univ (华中农业大学学报), 2004, 23(4): 483–487 (in Chinese with English abstract)

[29]Mpelasoka B S, Schachtman D P, Treeby M T, Thomas M R. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust J Grape Wine Res, 2003, 9: 154–168
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[5] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[6] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[10] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[11] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[12] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[13] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[14] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[15] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!