作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1127-1134.doi: 10.3724/SP.J.1006.2012.01127
夏凯1,2,徐双红1,王翔1,戴林建2,李鹏飞3,罗建新2,齐绍武2,杨琼2,周清明2,*
XIA Kai1,2,XU Shuang-Hong1,WANG Xiang1,DAI Lin-Jian2,LI Peng-Fei3,LUO Jian-Xing2,QI Shao-Wu2,YANG Qiong2,ZHOU Qing-Ming2,*
摘要: 以钾高效基因型K2、K3、K5、K7、K9与常规烤烟品种K326为材料, 采用漂浮育苗、移栽砂培的方法, 利用实时定量PCR调查钾代谢相关基因在烟草叶片中的表达情况, 并测定不同材料的钾吸收动力学参数和钾利用率。结果表明, K2、K7和K9是典型的富钾型, 12个钾代谢相关基因中TORK1和NtTPK1的表达水平相对较高。5个富钾型的钾吸收能力显著强于K326。但它们在高钾环境下钾素吸收能力强而利用率较低, 在低钾环境下钾吸收能力强且利用率相对较高, 尤其是品系K2、K7和K9钾的经济利用率相对较高。
[1]Chaplin J R. Production factors affecting chemical compounds of the tobacco leaf. Recent Adv Tob Sci, 1980, (6): 3–63[2]Sims J L, Casy M, Legget J E. Effect of transplant water fertilization on growth and chemical composition of burley tobacco. Annual report of the college of agriculture and the K. Y. Agric Exp Station, 1981, 59–60[3]Cao Z-H(曹志洪), Hu G-S(胡国松). Relationship between control of potassium and trace elements and quality of tobacco leaf. Soils (土壤), 1993, 25(3): 119–128 (in Chinese)[4]Anderson J A, Huprikar S S, Kochian L V, Lucas W J, Gaber R F. Function expression of a probable Arabidopsis thaliana potassium channel in Saccharomycex cerevisiae. Proc Natl Acad Sci USA, 1992, 89: 3736–3740[5]Sentenac H, Bonneaud N, Minet M. Cloning and expression in yeast of a plant potassium ion transport system. Science, 1992, 256: 663–665[6]Lu L-M(鲁黎明). In silico cloning and bioinformatic analysis of TPK1 gene in tobacco. Sci Agric Sin (中国农业科学), 2011, 44(1): 28–35 (in Chinese with English abstract)[7]Sano T, Becker D, Ivashikina N, Wegner L H, Zimmermann U, Roelfsema M R, Nagata T, Hedrich R. Plant cells must pass a K+ threshold to re-enter the cell cycle. Plant J, 2007, 50: 401–413[8]Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema M R G, Hedrich R. GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+ -sensing ion channel. FEBS, 2000, 486, 93–98[9]Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very A A, Simonneau T, Thibaud J B, Sentenac H. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA, 2003, 100: 5549–5554[10]Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L, Wu W H. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125(7): 1347–1360[11]Dai L-J(戴林建), Xu S-H(徐双红), Zhu L-S(朱列书), Zhong J(钟军), Xia K(夏凯). Research of tobacco offspring characters variation causing by introducted DNA of high potassium plant. Crop Res (作物研究), 2010, (2): 109–111 (in Chinese with English abstract)[12]Dai L-J(戴林建), Xu S-H(徐双红), Sun H-L(孙焕良), Wang K(王坤), Zhong J(钟军). SRAP analysis on the purity of tobacco D4 generation with portulaca DNA. Tob Sci (烟草科技), 2010, (7): 48–52 (in Chinese with English abstract)[13]Yang T-Z(杨铁钊), Peng Y-F(彭玉富). Potassium accumulation characteristics of rich-potassium genotypic flue-cured tobacco. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(5): 750–753 (in Chinese)[14]Yang T-Z(杨铁钊), Yang Z-X(杨志晓), Nie H-Z(聂红资), Zhang X-Q(张小全), Liu Y-J(刘友杰), Shang X-Y(尚晓颍), Ren Z-Y(任周营), Fan J-H(范进华). Potassium accumulation and root physiological characteristics of potassium-enriched flue-cured tobacco genotypes. Acta Agron Sin (作物学报), 2009, 35(3): 535–540 (in Chinese with English abstract)[15]Zhao X-Q(赵学强), Jie X-L(介晓磊), Li Y-T(李有田), Xu X-J(许仙菊), Tan J-F(谭金芳), Hua D-L(化党领). Studies in screening indices and screening environments for efficient potassium wheat genotypes. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(2): 277–281 (in Chinese with English abstract)[16]Verwoerd T C, Dekker B M, Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucl Acids Res, 1989, 17: 2362[17]Guo Z-K(郭兆奎), Yang Q(杨谦), Yan P-Q(颜培强), Wan X-Q(万秀清). Cloning and homology modeling of a potassium channel gene NKC1 from Nicotiana rustica. Acta Tab Sin (中国烟草学报), 2008, 14(5): 63–68 (in Chinese with English abstract)[18]Liu K, Luan S. Intracellular potassium sensing of SKOR, a shaker-type K-channel from Arabidopsis. Plant J, 2006, 46, 260–268[19]Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud J B, Sentenac H. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem, 2001, 276, 3215–3221[20]Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud J B, Sentenac H. Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell, 1998, 94, 647–655[21]Mao R-D(毛达如). Plant Nutrition Research (植物营养研究). Beijing: Beijing Agricultural University Press, 1994. pp 132–135 (in Chinese)[22]Min S-Z(闵水珠). Molecular biology research progress on plant potassium ion channel. Acta Agric Zhejiangensis (浙江农业学报), 2005, 17(3): 163–169 (in Chinese with English abstract)[23]Shin R, Schachtman D P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA, 2004, 101: 8827–8832[24]Zhao X-Q(赵学强), Jie X-L(介晓磊), Li Y-T(李有田), Xu X-J(许仙菊), Tan J-F(谭金芳), Hua D-L(化党领). Dynamics analysis of absorption of potassium ion in wheat with different genotypes. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(3): 307–312 (in Chinese with English abstract)[25]Wang Z-Q(汪自强), Dong M-Y(董明远). Efficiency of using potassium for spring soybean varieties with different level of pitassium. Soybean Sci (大豆科学), 1996, 15(3): 202–207 (in Chinese with English abstract)[26]Su B, Han X G, Huang J H, Qu C M. The nutrient use efficiency (NUE) of plants and its implications on the strategy of plant adaptation to nutrient Stressed environments. Acta Ecol Sin, 2000, 20: 335–343[27]Bridgham S D, McClaugherty C A, Richardson C J, Pastor J. Nutrient-use-efficiency: a litter fall index, a model and a test along a nutrient availability gradient in North Carolina peat lands. Am Nat, 1995, 145: 1–21[28]Jiang C-C(姜存仓), Wang Y-H(王运华), Lu J-W(鲁剑巍), Xu F-S(徐芳森), Gao X-Z(高祥照). Advances of study on the K-Efficiency in different plant genotypes. J Huazhong Agric Univ (华中农业大学学报), 2004, 23(4): 483–487 (in Chinese with English abstract)[29]Mpelasoka B S, Schachtman D P, Treeby M T, Thomas M R. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust J Grape Wine Res, 2003, 9: 154–168 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[3] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[4] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[5] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[6] | 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424. |
[7] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080. |
[10] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[11] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[12] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[13] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[14] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[15] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
|